
AES and SHA-3

Cristian Di Iorio 1983177
Pietro Costanzi Fantini 1982805

AES

Cristian Di Iorio

AES is a symmetric-key block cipher standardized

by NIST in 2001.

#

What is AES?

AES is a general purpose symmetric block cipher. It operates on fixed-size input blocks of size 128 bits

and the key size can be 128, 192 or 256 bits.

Internally, the algorithm processes the entire 16-byte block (as a 4x4 matrix of bytes called the state) in

parallel during each round.

#

The input key is expanded using KeyExpansion(), which is expanded into an array of (at least)

forty-four 32-bit words.

Each round four distinct words are used as the round key.

The number of processing rounds depends on the key size:

● 10 rounds for a 128-bit key,

● 12 rounds for a 192-bit key,

● 14 rounds for a 256-bit key.

#

Each round (except the final one) consists of four transformations:

1. SubBytes(): A non-linear byte-by-byte substitution step performed according to a lookup table

known as the S-box.

2. ShiftRows(): A row-by-row permutation step, where the last three rows of the state matrix are

cyclically shifted by different offsets.

3. MixColumns(): A linear substitution that operates on the columns of the state, combining the

four bytes in each column.

4. AddRoundKey(): The state is combined with the round key using a bitwise XOR operation.

#

Encryption and
Decryption

#

Parallelization issues

The round keys used in the AddRoundKey()step are generated from the initial cipher key via the

KeySchedule algorithm. This procedure expands the key into a sufficient number of round keys for all

rounds of the encryption.

Critically, the key expansion process is inherently sequential.

As a result, it does not expose significant parallelism and is ill-suited for GPU execution. In nearly all

high-performance implementations, the key schedule is computed once on the CPU, and the resulting

expanded keys are then transferred to the GPU for use in the parallel encryption of many blocks.

#

Parallelizable Encryption Modes -ECB
Electronic Codebook

This is the simplest mode, where each plaintext block is encrypted directly and independently with the same

key.

This structure maps perfectly to the GPU's architecture, as each thread (or a small group of threads) can be

assigned a unique block to encrypt, allowing for massive, straightforward parallelism.

However, ECB is cryptographically weak and generally insecure for most applications.

#

Parallelizable Encryption Modes - CTR
Counter

Encrypts a counter value (IV) and XORs the output with the

plaintext block.

Since the encryption of each counter value is independent of any

other plaintext or ciphertext block, CTR mode is fully
parallelizable for both encryption and decryption.

Due to its security and parallel nature, CTR is the most common

mode used in high-performance implementations.

#

CPU Implementation

AES-NI (AES - New Instructions) is an extension of the x86 ISA introduced in 2008 to provide new

processors with AES encryption at hardware level.

Thanks to six new instructions, AES-NI transforms heavy AES operations into single, pipelinable,
constant-time vector instructions:

● AESENC, AESENCLAST, AESDEC, and AESDELAST instructions were developed to facilitate high

performance AES encryption and decryption,

● AESIMC and AESKEYGENASSIST were created to assist in the key expansion process.

#

The speedup for CPU AES-NI instructions comes from multiple reasons:

1. Fewer operations: without AES-NI, a round consisted of 50/60 scalar operations.

 with AES-NI, a round consists of a single vector instruction.

2. Dedicated hardware: an AES execution unit performs S-box, MixColumns and XOR in fixed latency

3. Pipelining: AES instructions can be issued every 1-2 cycles, meaning that rounds for several blocks

can be interleaved to achieve maximum throughput

4. No cache misses: long-latency loads are eliminated

#

GPU Implementation techniques

1. Naive technique: translating the four round operations into four distinct CUDA functions.

2. Bitsliced technique

3. T-table based technique

#

GPU Implementation techniques
Bitsliced:

Data is rearranged so that each bit of the 128-bit round input is stored in 128 different registers.

The AES operations are then rewritten as a series of independent bitwise operations on these large

registers.

This can achieve very high performance but is significantly more complex to implement and can’t occupy the

GPU fully.

It requires more register usage.

#

GPU Implementation techniques
T-Table Based:

The output for the SubBytes, ShiftRows, and MixColumns operations is pre-computed and combined into a set

of four lookup tables, known as T-boxes.

This transforms a round into just 16 table lookups and 16 XOR operations.

T-tables are stored in shared memory.

#

Further Optimizations

Optimization of Advanced Encryption Standard on Graphics Processing Units by C. Tezcan elaborates on the

T-table approach. It proposes various optimizations to improve the performance of CUDA AES:

1. Removing shared bank memory conflicts when accessing T-tables,

2. Replacing two SHIFT and one AND operation with a single __byte_perm() operation for

rotation,

3. Removing shared bank memory conflicts when accessing S-box in the last round.

#

1) Memory conflicts when accessing T-tables

Classic CUDA implementations keep the 4 T-tables in shared memory using 256 32-bit values.

Shared memory is divided into 32-bit modules with a bandwidth of 32 bits per clock cycle. As we all know

each CUDA warp has 32 threads, so there are two possible scenarios:

● Each thread in a warp accesses different banks => no conflicts

● Two (or more) threads try to read data from the same shared memory bank => these accesses

become serialized and we have a bank conflict

#

Since T-table accesses are randomized, the chance of bank conflicts is very high!

To remove this risk, we can duplicate the T-table 32 times for each bank and reserve banks to individual

threads in a warp. We are trading more shared memory to remove conflicts: we spend 32 KB instead of

1KB.

This creates an issue, since most GPUs have a limit of 64 KB of shared memory.

To bypass this, we only keep the first T-table T0 in memory, since all other tables can be obtained from T0

through rotations.

If future GPUs will have enough shared memory to fit all 4 duplicated T-tables we could avoid this last

step, resulting in an even greater performance gain.

#

2) Using __byte_perm() for rotation

In pre existing AES implementations, two SHIFT instructions and one AND instructions are used when

performing T-table rotation.

However, C. Tezcan discovered that the single __byte_perm() CUDA operation can be used to perform

a rotation.

A 2% performance improvement can be achieved by using this optimization. It will also be crucial later on

in avoiding memory bottlenecks.

#

3) Memory conflicts when accessing S-box

It is kept in shared memory and suffers from bank conflicts similar to the T-table.

We can fix this by noting that the S-box produces a 8-bit output. So, we can “compress” the S-box by

storing every four values in a three-dimensional array [64][32][4].

A thread i can access the output of the S-box with input j: S[j/4][i][j%4]

This reduces the total table size from 32KB to 8KB and removes bank conflicts.

#

Analysis of CUDA AES implementations
CPU side

- Setup, like initializing the counter with the

nonce and performing cudaMalloc() for

GPU memory.

- Kernel launch, invoking the __global__
AES-CTR kernel.

- Cleanup, with cudaFree().

GPU side

- Unique block index, computed with

blockIdx.x * blockDim.x +
threadIdx.x;

- AES rounds, threads load the S-box and

T-tables into shared memory. At the end of

each round a XOR is performed with the

round key which resides in constant memory.

The state of each round is saved in registers.

- Last AES round, where each thread writes its

16-byte ciphertext block into a

global-memory buffer.

#

Testing

1. For CPU only AES, we will use the openssl library functions: EVP_aes_128_ctr(),

EVP_aes_192_ctr() and EVP_aes_256_ctr().
2. For Naive CUDA AES, we will use the code provided by Li et al.

3. For Optimized CUDA AES, we will use the code provided in the paper by Tezcan.

The reference systems we will compare our results to come from:

● For CPU without AES-NI, we could not find good reference data from the Intel White Paper by S. Gueron,

● For CPU with AES-NI, the i7 10700F used in the paper by C. Tezcan.

● For Naive CUDA, the unspecified GPU used in the report by Li et Al.
● For Optimized CUDA, the RTX 2070 Super used in the paper by C. Tezcan.

CPU: Ryzen 5 2600 CPU

GPU: Nvidia GTX 1650 (4GB)

with CC 7.5

RAM: 32GB

#
https://github.com/gh0stintheshe11/CUDA-Accelerated-AES-Encryption.git
https://github.com/cihangirtezcan/CUDA_AES

Metrics

We will cover these metrics:

1. Throughput (Gbps). We will measure it directly inside the code.

2. Energy efficiency (Gpbs / Watts):

To measure energy efficiency, we need to measure the power consumption; it’s different for CPU and

GPU applications obviously:

● in CPU applications we will use HWinfo64, a common system monitoring tool.

● in GPU applications we will use nvidia-smi, a command-line utility used to monitor Nvidia GPUs

#

Our testing results for AES-128

Throughput Reference
Throughput

Energy efficiency Reference
Efficiency

CPU without AES-NI 5.58 Gbps no data 0.21 Gbps/W no data

CPU with AES-NI 50.56 Gbps 134.7 Gbps 1.69 Gbps/W 2.07 Gbps/W

Naive CUDA 9 Gbps 14.6 Gbps 0.57 Gbps/W no data

Fully optimized CUDA 317.78 Gpbs 878.6 Gpbs 5.43 Gbps/W 4.087 Gbps/W

#

Our testing results for AES-192

Throughput Reference
Throughput

Energy efficiency Reference
Efficiency

CPU without AES-NI 4.70 Gbps no data 0.17 Gbps/W no data

CPU with AES-NI 47.79 Gbps no data 1.59 Gbps/W no data

Naive CUDA 8.61 Gbps no data 0.54 Gbps/W no data

Fully optimized CUDA 259.44 Gbps 718.3 Gbps 4.40 Gbps/W 3.34 Gbps/W

#

Our testing results for AES-256

Throughput Reference
Throughput

Energy efficiency Reference
Efficiency

CPU without AES-NI 3.94 Gbps no data 0.14 Gbps/W no data

CPU with AES-NI 45.37 Gbps no data 1.51 Gpbs/W no data

Naive CUDA 8.1 Gbps no data 0.50 Gbps/W no data

Fully optimized CUDA 219.9 Gbps 606.9 Gbps 3.75 Gbps/W 2.82 Gbps/W

#

Evaluation of our tests

#

Evaluation of our tests

#

Nsight Compute - naive AES-128

#

Nsight Compute - optimized AES-128

#

Analysis of Nsight Compute results

Compute (SM) Throughput Memory Throughput

Naive AES 5.21 % 2.08 %

Optimized AES 93.24 % 93.24 %

Throughput data

#

L1/TEX Cache Throughput L2 Hit Rate

Naive AES 23.78% 64.96%

Optimized AES 98.73 % 23.43%

L1 and L2 data

Occupancy

Achieved Occupancy Active Warps per SM

Naive AES 24.39% 7.80

Optimized AES 94.35% 30.19

#

Conclusion and bibliography

● How AES works
W. Stallings, L. Brown, “Computer Security: Principles and Practice”, Fourth edition, Pearson 2018

● How CPUs can be optimized for AES
S. Gueron, “Intel® Advanced Encryption Standard (AES) New Instructions Set ”, White Paper, 2010.

● How AES can be parallelized for GPU implementations
S. Wagh, P. Phad, A. Surwade, ”Parallel Implementation of AES algorithm on GPU”, in International Journal of Computer
Science and Mobile Computing, vol.4 issue 3, pp. 247-252, 2015.

● How AES GPU implementations can be further optimized
C. Tezcan, "Optimization of Advanced Encryption Standard on Graphics Processing Units," in IEEE Access, vol. 9, pp.
67315-67326, 2021.

● Comparison between all implementations

#

SHA-3

Pietro Costanzi Fantini

SHA-3, also known as Secure Hash

Algorithm 3, is a cryptographic hash function

standardized by the U.S. National Institute

of Standards and Technology (NIST).

#

What is SHA-3?

It's the latest member of the Secure Hash Algorithm family, chosen by NIST in 2015 to be the new

standard.

These are a collection of cryptographic hash functions, which are hash algorithms (a map of an arbitrary

binary string to a binary string with a fixed size of n bits) that have special properties desirable for

cryptographic applications.

It's not meant to replace the SHA-2, but to be a robust, alternative for the future.

#

What makes a Secure Hash Function?
1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x.

4. For any given code h, it is computationally infeasible to find x such that H(x) = h. A hash function

with this property is referred to as one-way or preimage resistant.

5. For any given block x, it is computationally infeasible to find y ≠ x with H(y) = H(x). A hash function

with this property is referred to as weak collision resistant.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y). A hash function with this

property is referred to as strong collision resistant.

#

What makes a Secure Hash Function?

The strength of a hash function against brute-force attacks depends solely on the length of the hash code

produced by the algorithm. For a hash code of length n, the level of effort required is proportional to the

following:

#

SHA-1 and SHA-2

Previous implementations of the Secure Hash Functions relied on the Merkle–Damgård construction.

#

SHA-3
While previous versions used the Merkle–Damgård construction, SHA-3 uses the sponge construction.

Sponge construction is based on a wide random function or random permutation, and allows inputting

any amount of data (absorbing), and outputting any amount of data (squeezing). This leads to great

flexibility.

It provides a strong, modern, and structurally different alternative to existing hash algorithms, enhancing

cryptographic diversity and security.

#

SHA-3

#

SHA-3 collisions

For standard instances where output < r bits, the output will have size c/2. This leads to a security of

output collisions of c/2.

#

SHA-3 collisions

For small instances where output > r bits, in order for the attacker to get a collison on output blocks he

would have to get it on several of them. The inner collisions, or collisions in the capacity part of the inner

stare, are more of an issue since the output = c so the same generic security as output collisions.

#

Inner collisions

#

SHA-3
Central to the sponge construction is the concept of state. The state

has a length of 1600 bits and consists of a three-dimensional 5×5×64

table. Each bit of this cube can be addressed with 𝐴[𝑥,𝑦,𝑧].

In order to facilitate the description of the applied functions, the

following conventions are used: the part of the state that presents

the word is also called a lane, a two-dimensional part of the state

with a fixed z is called a slice, and all lanes with the same x-coordinate

form a sheet.

#

The Keccak-f Permutation

Just as AES has its round transformations, the heart of SHA-3 is a permutation function called Keccak-f.

This function scrambles a block of data, known as the state.

The permutation consists of 24 rounds, and each round is made up of four distinct steps:

1. θ (Theta): consists of a parity computation, a rotation of one position, and a bitwise XOR. This

provides diffusion, ensuring a change in one bit quickly affects many others.

#

The Keccak-f Permutation

2. ρ (Rho): is a rotation by an offset that depends on the word position, and 𝜋 is a permutation of the

lanes themselves. This further disrupts patterns.

3. χ (Chi): The only non-linear step in the permutation. It consists of bitwise XOR, NOT, and AND

gates. This provides confusion and is the primary defense against cryptographic attacks.

#

The Keccak-f Permutation

4. ι (Iota): XORs a round-dependent constant into one lane of the state. This breaks the symmetry

between the different rounds.

#

The Keccak-f Permutation

#

Parallelization Strategy for SHA-3

Unlike AES, which has different modes of operation (like CTR) to enable parallelism, SHA-3's sponge

construction is inherently serial for a single, long message.

Therefore, high-performance implementations focus on a different kind of parallelism: hashing many
independent messages simultaneously.

● The workload: this is ideal for scenarios like password verification servers or cryptocurrency

mining, where millions of small, separate inputs need to be hashed as quickly as possible.

● GPU Mapping: this workload maps perfectly to the GPU's architecture. We can assign each

independent message to a separate thread block on the GPU, allowing thousands of hashes to be

computed in parallel.

#

CPU Implementation & Optimizations

Optimized CPU (OpenSSL):

● This uses the industry-standard OpenSSL
crypto library.

● Highly optimized using SIMD (Single

Instruction, Multiple Data) vector

instructions like AVX2. These instructions

perform the same operation (e.g., XOR) on

large 256-bit registers at once, processing

multiple lanes of the Keccak state in parallel

within a single CPU core.

Unoptimized CPU (Pure C++):

● A simple, "textbook" implementation

written from scratch.

● It performs all operations on standard
64-bit integers, one at a time. It does not

use any vector instructions.

● This provides a baseline to demonstrate

the immense performance gains

achieved through low-level hardware

optimizations.

#

GPU Implementation & Optimizations

Our GPU implementation was written in CUDA C++ and designed to maximize parallel throughput.

● Kernel Launch Strategy: The host code launches one CUDA thread block for each message to be

hashed. For our test we used 1 million messages.

● Shared Memory: The Keccak state for each hash is stored in __shared__ memory. This is a small,

extremely fast on-chip memory that all threads in a block can access with very low latency,

avoiding slow reads/writes to the main GPU VRAM during the 24 permutation rounds.

#

Testing Setup & Metrics

For the testing we decided to implement two separate benchmark scenarios:

● Large File Hashing (Serial Workload): hashing single files of different sizes (1KB, 10KB, 50KB,

500KB, 1MB, 10 MB, 50MB, 100MB). This simulates verifying a file download. It’s a classic serial
task that CPUs are built for.

● High-Volume Hashing (Parallel Workload): hashing numerous small, independent messages (32B,

64B, 128B, 256B, 512B). This simulates tasks like password cracking or blockchain mining. It's a

classic parallel task that GPUs are built for.

#

Testing Setup & Metrics

The hardware used to perform the tests:

● CPU: Intel® Core i7-7700K @ 4.20GHz

● GPU: NVIDIA GeForce GTX 1070

Primary metrics used:

● Throughput (MB/s): The total amount of message data processed per second.

● Time taken (seconds): The raw execution time for the benchmark.

● Speedup Factor (x): How many times faster the GPU is compared to the CPU implementations.

#

#

#

#

#

#

#

#

#

#

Result analysis
From these results we can say that the optimal hardware for SHA-3 hashing is entirely dependent on the

nature of the workload. There is no single "best" architecture, the choice is a trade-off between serial

speed and parallel throughput.

Serial Workloads:

The Optimized CPU is the clear winner. The OpenSSL implementation, with its high clock speed and use

of AVX instructions, consistently outperforms both the GPU and the unoptimized CPU.

GPU performance is limited by overhead. For smaller files (<10 MB), the GPU was even slower than the

unoptimized CPU due to the high latency of memory transfers and kernel launches. This overhead

becomes less significant as file size increases.

#

Result analysis
From these results we can say that the optimal hardware for SHA-3 hashing is entirely dependent on the

nature of the workload. There is no single "best" architecture, the choice is a trade-off between serial

speed and parallel throughput.

Parallel Workloads:

The GPU is the clear winner. In this scenario, the GPU's massively parallel architecture provides a

speedup of over 10x compared to the optimized CPU and over 100x compared to the unoptimized

version.

This proves the GPU's superiority for tasks like password cracking, blockchain calculations, or handling

thousands of simultaneous server requests.

#

Result analysis
From these results we can say that the optimal hardware for SHA-3 hashing is entirely dependent on the

nature of the workload. There is no single "best" architecture, the choice is a trade-off between serial

speed and parallel throughput.

Impact of optimization:

The performance gap between the simple C++ implementation and the optimized OpenSSL library is

enormous, highlighting that using a professionally optimized library is critical for any real-world

application.

#

Bibliography

● C. Wang, X. Chu "GPU Accelerated Keccak (SHA3) Algorithm"

● W. Stallings, L. Brown, “Computer Security: Principles and Practice”, Fourth edition, Pearson 2018

● A. Dolmeta, M. Martina, G.Masera, “Comparative Study of Keccak SHA-3 Implementations”,

Cryptography 2023, 7, 60

● G. Bertoni, J. Daemen, M. Peeters, G. Van Assche and R. Van Keer, “Keccak implementation
overview”, SHA-3 competition (round 3), 2012

● R. Boissier, C. Nous, Y. Rotella, “Algebraic Collision Attacks on Keccak”, IACR Transactions on

Symmetric Cryptology, 2021(1), 239-268

#

#

