AES and SHA-3

Cristian Di lorio 1983177
Pietro Costanzi Fantini 1982805

AES AES is a symmetric-key block cipher standardized
by NIST in 2001.

Byte Sub

Shift Row

Cristian Di lorio

N
S

#

What is AES?

AES is a general purpose symmetric block cipher. It operates on fixed-size input blocks of size 128 bits
and the key size can be 128, 192 or 256 bits.

Internally, the algorithm processes the entire 16-byte block (as a 4x4 matrix of bytes called the state) in
parallel during each round.

N
S

#

The input key is expanded using KeyExpansion(), which is expanded into an array of (at least)
forty-four 32-bit words.

Each round four distinct words are used as the round key.

The number of processing rounds depends on the key size:

e 10roundsfor a 128-bit key,
e 12 roundsfora 192-bit key,
e 14 roundsfor a256-bit key.

N
S

#

Each round (except the final one) consists of four transformations:

1. SubBytes(): A non-linear byte-by-byte substitution step performed according to a lookup table
known as the S-box.

2. ShiftRows(): A row-by-row permutation step, where the last three rows of the state matrix are
cyclically shifted by different offsets.

3. MixColumns():Alinear substitution that operates on the columns of the state, combining the
four bytes in each column.

4. AddRoundKey (): The state is combined with the round key using a bitwise XOR operation.

N
S

#

N
S

Encryption and
Decryption

636

Y M A
\YMMI

Plaintext

Add Round Key

R

(

JOCRYPTION ANI

Key

4

— wl0, 3]

) MESS

GE CONFIDEN1

Plaintext

Add Round Key

Expand Key]

Round |

Add Round Key

Ciphertext

Round 9

Round 10

(a) Encryption

Figure 20.3

L w[36, 39]

w[40, 43]

AES Encryption and Decryption

Inverse Sub Bytes

Inverse Shift Rows

Inverse Mix Cols

Add Round Key

_Ad\l Round Key

Ciphertext

(b) Decryption

Round 10

Round 9

Round 1

#

N
S

Parallelization issues

The round keys used in the AddRoundKey () step are generated from the initial cipher key via the
KeySchedule algorithm. This procedure expands the key into a sufficient number of round keys for all
rounds of the encryption.

Critically, the key expansion process is inherently sequential.

As aresult, it does not expose significant parallelism and is ill-suited for GPU execution. In nearly all
high-performance implementations, the key schedule is computed once on the CPU, and the resulting
expanded keys are then transferred to the GPU for use in the parallel encryption of many blocks.

#

N
S

Parallelizable Encryption Modes -ECB

Electronic Codebook

This is the simplest mode, where each plaintext block is encrypted directly and independently with the same
key.

This structure maps perfectly to the GPU's architecture, as each thread (or a small group of threads) can be
assigned a unique block to encrypt, allowing for massive, straightforward parallelism.

However, ECB is cryptographically weak and generally insecure for most applications.

#

N
S

Parallelizable Encryption Modes - CTR

Counter

Encrypts a counter value (IV) and XORs the output with the
plaintext block.

Since the encryption of each counter value is independent of any
other plaintext or ciphertext block, CTR mode is fully
parallelizable for both encryption and decryption.

Due toits security and parallel nature, CTR is the most common
mode used in high-performance implementations.

Figure 20.9 Counter (CTR) Mode

#

CPU Implementation

AES-NI (AES - New Instructions) is an extension of the x86 ISA introduced in 2008 to provide new
processors with AES encryption at hardware level.

Thanks to six new instructions, AES-NI transforms heavy AES operations into single, pipelinable,
constant-time vector instructions:

e AESENC, AESENCLAST, AESDEC, and AESDELAST instructions were developed to facilitate high
performance AES encryption and decryption,
e AESIMC and AESKEYGENASSIST were created to assist in the key expansion process.

N
S

#

The speedup for CPU AES-NI instructions comes from multiple reasons:

1. Fewer operations: without AES-NI, a round consisted of 50/60 scalar operations.
with AES-NI, a round consists of a single vector instruction.
2. Dedicated hardware: an AES execution unit performs S-box, MixColumns and XOR in fixed latency
3. Pipelining: AES instructions can be issued every 1-2 cycles, meaning that rounds for several blocks
can be interleaved to achieve maximum throughput
4. No cache misses: long-latency loads are eliminated

N
S

#

GPU Implementation techniques

1. Naive technique: translating the four round operations into four distinct CUDA functions.
2. Bitsliced technique
3. T-table based technique

N

#

GPU Implementation techniques

Bitsliced:
Datais rearranged so that each bit of the 128-bit round input is stored in 128 different registers.

The AES operations are then rewritten as a series of independent bitwise operations on these large
registers.

This can achieve very high performance but is significantly more complex to implement and can’t occupy the
GPU fully.

It requires more register usage.

N
S

#

GPU Implementation techniques

T-Table Based:

The output for the SubBytes, ShiftRows, and MixColumns operations is pre-computed and combined into a set
of four lookup tables, known as T-boxes.

This transforms a round into just 16 table lookups and 16 XOR operations.

T-tables are stored in shared memory.

N

#

Further Optimizations

Optimization of Advanced Encryption Standard on Graphics Processing Units by C. Tezcan elaborates on the
T-table approach. It proposes various optimizations to improve the performance of CUDA AES:

1. Removing shared bank memory conflicts when accessing T-tables,
2. Replacing two SHIFT and one AND operation with asingle __byte_perm() operation for

rotation,
3. Removing shared bank memory conflicts when accessing S-box in the last round.

N
S

#

1) Memory conflicts when accessing T-tables

Classic CUDA implementations keep the 4 T-tables in shared memory using 256 32-bit values.

Shared memory is divided into 32-bit modules with a bandwidth of 32 bits per clock cycle. As we all know
each CUDA warp has 32 threads, so there are two possible scenarios:

e Eachthreadin awarp accesses different banks => no conflicts
e Two (or more) threads try to read data from the same shared memory bank => these accesses
become serialized and we have a bank conflict

N
S

#

N
S

Since T-table accesses are randomized, the chance of bank conflicts is very high!

To remove this risk, we can duplicate the T-table 32 times for each bank and reserve banks to individual
threads in a warp. We are trading more shared memory to remove conflicts: we spend 32 KB instead of
1KB.

This creates an issue, since most GPUs have a limit of 64 KB of shared memory.

To bypass this, we only keep the first T-table T@ in memory, since all other tables can be obtained from T9
through rotations.

If future GPUs will have enough shared memory to fit all 4 duplicated T-tables we could avoid this last
step, resulting in an even greater performance gain.

#

2) Using __byte_perm() for rotation

In pre existing AES implementations, two SHIFT instructions and one AND instructions are used when
performing T-table rotation.

However, C. Tezcan discovered that the single __byte_perm() CUDA operation can be used to perform
arotation.

A 2% performance improvement can be achieved by using this optimization. It will also be crucial later on
in avoiding memory bottlenecks.

N
S

#

N
S

3) Memory conflicts when accessing S-box

It is kept in shared memory and suffers from bank conflicts similar to the T-table.

We can fix this by noting that the S-box produces a 8-bit output. So, we can “compress” the S-box by
storing every four values in a three-dimensional array [64][32][4].

Athreadi can access the output of the S-box withinputj: S[j/4]1[1][j%4]

This reduces the total table size from 32KB to 8KB and removes bank conflicts.

#

N
S

Analysis of CUDA AES implementations

CPU side

- Setup, like initializing the counter with the
nonce and performing cudaMalloc () for
GPU memory.

- Kernel launch, invokingthe __global__
AES-CTR kernel.

- Cleanup, with cudaFree().

GPU side

Unique block index, computed with
blockIdx.x * blockDim.x +
threadIdx.x;

AES rounds, threads load the S-box and
T-tables into shared memory. At the end of
each round a XOR is performed with the
round key which resides in constant memory.
The state of each round is saved in registers.
Last AES round, where each thread writes its
16-byte ciphertext block into a
global-memory buffer.

#

CPU: Ryzen 5 2600 CPU
GPU: Nvidia GTX 1650 (4GB)
withCC 7.5

RAM: 32GB

Testing

1. For CPUonly AES, we will use the openss1 library functions: EVP_aes_128_ctr (),
EVP_aes_192_ctr() andEVP_aes_256_ctr().

2. For Naive CUDA AES, we will use the code provided by Li et al.

3. For Optimized CUDA AES, we will use the code provided in the paper by Tezcan.

The reference systems we will compare our results to come from:

For CPU without AES-NI, we could not find good reference data from the Intel White Paper by S. Gueron,
For CPU with AES-NI, the i7 10700F used in the paper by C. Tezcan.

For Naive CUDA, the unspecified GPU used in the report by Li et Al.

For Optimized CUDA, the RTX 2070 Super used in the paper by C. Tezcan.

N
S

#
https://github.com/gh0stintheshe11/CUDA-Accelerated-AES-Encryption.git
https://github.com/cihangirtezcan/CUDA_AES

Metrics

We will cover these metrics:

1. Throughput (Gbps). We will measure it directly inside the code.
2. Energy efficiency (Gpbs / Watts):

To measure energy efficiency, we need to measure the power consumption; it’s different for CPU and
GPU applications obviously:

e inCPU applications we will use HNinfo64, a common system monitoring tool.
e in GPU applications we will use nvidia-smi, a command-line utility used to monitor Nvidia GPUs

N
S

#

Our testing results for AES-128

Throughput Reference Energy efficiency = Reference
Throughput Efficiency
CPU without AES-NI 5.58 Gbps 0.21 Gbps/W
CPU with AES-NI 50.56 Gbps 134.7 Gbps 1.69 Gbps/W 2.07 Gbps/W
Naive CUDA 9 Gbps 14.6 Gbps 0.57 Gbps/W

Fully optimized CUDA 317.78 Gpbs 878.6 Gpbs 5.43 Gbps/W 4.087 Gbps/W

#

Our testing results for AES-192

Throughput Reference Energy efficiency = Reference

Throughput Efficiency
CPU without AES-NI 4.70 Gbps 0.17 Gbps/W
CPU with AES-NI 47.79 Gbps 1.59 Gbps/W
Naive CUDA 8.61 Gbps 0.54 Gbps/W

Fully optimized CUDA 259.44 Gbps 718.3 Gbps 4.40 Gbps/W 3.34 Gbps/W

#

Our testing results for AES-256

Throughput Reference Energy efficiency = Reference

Throughput Efficiency
CPU without AES-NI 3.94 Gbps 0.14 Gbps/W
CPU with AES-NI 45.37 Gbps 1.51 Gpbs/W
Naive CUDA 8.1 Gbps 0.50 Gbps/W

Fully optimized CUDA 219.9 Gbps 606.9 Gbps 3.75 Gbps/W 2.82 Gbps/W

#

Evaluation of our tests

AES Throughput by Configuration and Key Size

AES Variant
300 Wmm AES-128
mm AES-192
I AES-256
250}
i
o
8 200}
I
=)
o
5 150+
=
e
e
= 100}
50
° S
&
s
0\)

0
N\ &

#

Evaluation of our tests

Energy Efficiency Across Configurations by AES Variant

AES Variant
B AES-128
SI mmm AES-192

Bm AES-256

Energy Efficiency (Gbps/W)

0g
i

#

Nsight Compute - naive AES-128

» GPU Speed Of Light Throughput

[®)
High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical maximum. Breakdowns show the throughput for each individual sub-metric of Compute and
Memory to clearly identify the highest contributor.

Compute (SM) Throughput [%] 5.21 Duration [us] 19.52
Memory Throughput [%] 2.08 Elapsed Cycles [cycle] 28,800
L1/TEX Cache Throughput [% 23.85 SM Active Cycles [cycle] 1,879.29
L2 Cache Throughput [%] 2.08 SM Frequency [Ghz] 147
DRAM Throughput [%] 1.62 DRAM Freguency [Ghz] 3.86

» Memory Workload Analysis

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available communication bandwidth between those units (Max Bandwid
reaching the maximum throughput of issuing memory instructions (Mem Pipes Busy). Detailed chart of the memory units. Detailed tables with data for each memory unit.

Memory Throughput [Gbyte/s] 1.99 Mem Busy [%]
L1/TEX Hit Rate [%] 98.16 Max Bandwidth [%]
L2 Hit Rate [%] 64.96 Mem Pipes Busy [%]

» Occupancy

Occupancy is the ratio of the number of active warps per multiprocessor to the maximum number of possible active warps. Another way to view occupancy is the percentage of the hardware’s ability to process warps that is actively in use. Higher occupancy does not always result in
higher performance, however, low occupancy always reduces the ability to hide latencies, resulting in overall performance degradation. Large discrepancies between the theoretical and the achieved occupancy during execution typically indicates highly imbalanced workloads.
Theoretical Occupancy [%] 100 Block Limit Registers [block]

Theoretical Active Warps per SM [warp] 32 Block Limit Shared Mem [block]

Achieved Occupancy [%]

2439 Block Limit Warps [block]
X Achieved Active Warps Per SM [warp]

7.80 Block Limit SM [block]
W[/

#

Nsight Compute - optimized AES-128

Eb GPU Speed Of Light Throughput o

High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical maximum. Breakdowns show the throughput for each individual sub-metric of Compute and
Memory to clearly identify the highest contributor.

Compute (SM) Throughput [%]
Memory Throughput [%]
L1/TEX Cache Throughput [%]
L2 Cache Throughput [%]
DRAM Throughput [%]

93.24 Duration [s]

93.24 Elapsed Cycles [cycle]

98.73 SM Active Cycles [cycle]
0.47 SM Frequency [Ghz]
1.16 DRAM Frequency [Ghz]

16.99
25,245948,630
24,890,088,261.50
1.48

3.97

» Memory Workload Analysis (@]

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available communication bandwidth between those units (Max Bandwidth), or by
reaching the maximum throughput of issuing memory instructions (Mem Pipes Busy). Detailed chart of the memory units. Detailed tables with data for each memory unit.

Memory Throughput [Gbyte/s]
L1/TEX Hit Rate [%]

L2 Hit Rate [%]

1.47 Mem Busy [%]
77.04 Max Bandwidth [%]
23.43 Mem Pipes Busy [%]

49.36
93.24

» Occupancy

Occupancy is the ratio of the number of active warps per multiprocessor to the maximum number of possible active warps. Another way to view occupancy is the percentage of the hardware’s ability to process warps that is actively in use. Higher occupancy does not always result in
higher performance, however, low occupancy always reduces the ability to hide latencies, resulting in overall performance degradation. Large discrepancies between the theoretical and the achieved occupancy during execution typically indicates highly imbalanced workloads.
Theoretical Occupancy [%]

Theoretical Active Warps per SM [warp] 32 Block Limit Shared Mem [block]
Achieved Occupancy [%]

9435 Block Limit Warps [block]
« Achieved Active Warps Per SM [warp] 30.19 Block Limit SM [block]
N

/4

100 Block Limit Registers [block]

#

Analysis of Nsight Compute results

Throughput data
Compute (SM) Throughput Memory Throughput
Naive AES 521 % 2.08 %
Optimized AES 93.24 % 93.24 %

N

#

Naive AES

Optimized AES

Naive AES

Optimized AES

L1 and L2 data
L1/TEX Cache Throughput
23.78%

98.73 %

Occupancy
Achieved Occupancy

24.39%

94.35%

L2 Hit Rate
64.96%

23.43%

Active Warps per SM
7.80

30.19

#

Conclusion and bibliography

e How AES works

W. Stallings, L. Brown, “Computer Security: Principles and Practice”, Fourth edition, Pearson 2018

e How CPUs can be optimized for AES
S. Gueron, “Intel® Advanced Encryption Standard (AES) New Instructions Set ”, White Paper, 2010.

e How AES can be parallelized for GPU implementations

S. Wagh, P. Phad, A. Surwade, "Parallel Implementation of AES algorithm on GPU”, in International Journal of Computer
Science and Mobile Computing, vol.4 issue 3, pp. 247-252, 2015.

e How AES GPU implementations can be further optimized

C. Tezcan, "Optimization of Advanced Encryption Standard on Graphics Processing Units," in IEEE Access, vol. 9, pp.
67315-67326,2021.

Comparison between all implementations

N
S

#

(z

SHA-3

Pietro Costanzi Fantini

SHA-3, also known as Secure Hash
Algorithm 3, is a cryptographic hash function
standardized by the U.S. National Institute
of Standards and Technology (NIST).

Hashing Algorithm

i #blcld
&”(#df
H | .
_r
Plain Text Hash Function Hashed Text

#

What is SHA-3?

It's the latest member of the Secure Hash Algorithm family, chosen by NIST in 2015 to be the new
standard.

These are a collection of cryptographic hash functions, which are hash algorithms (a map of an arbitrary
binary string to a binary string with a fixed size of n bits) that have special properties desirable for
cryptographic applications.

It's not meant to replace the SHA-2, but to be a robust, alternative for the future.

N
S

#

What makes a Secure Hash Function?

1. Hcanbe applied to a block of data of any size.
H produces a fixed-length output.

H(x) is relatively easy to compute for any given x.

> w0

For any given code h, it is computationally infeasible to find x such that H(x) = h. A hash function
with this property is referred to as one-way or preimage resistant.

5. Forany given block x, it is computationally infeasible to find y # x with H(y) = H(x). A hash function
with this property is referred to as weak collision resistant.

6. Itis computationally infeasible to find any pair (x, y) such that H(x) = H(y). A hash function with this
property is referred to as strong collision resistant.

N
S

#

What makes a Secure Hash Function?

The strength of a hash function against brute-force attacks depends solely on the length of the hash code
produced by the algorithm. For a hash code of length n, the level of effort required is proportional to the

following:

Preimage resistant 2¢
Second preimage resistant | 2
Collision resistant 29

N
S

#

SHA-1 and SHA-2

Previous implementations of the Secure Hash Functions relied on the Merkle-Damgard construction.

Original message | Padding/length
n bits n bits n bits
o W] e [
Y Y Y
m bits m bits
: H1 H2 Hrl .

H
(=]
<~
Y
S
\

— 7
Message
digest

Compression Compression Compression
function function function

N

#

SHA-3

While previous versions used the Merkle-Damgard construction, SHA-3 uses the sponge construction.

Sponge construction is based on a wide random function or random permutation, and allows inputting
any amount of data (absorbing), and outputting any amount of data (squeezing). This leads to great
flexibility.

It provides a strong, modern, and structurally different alternative to existing hash algorithms, enhancing
cryptographic diversity and security.

N
S

#

N

P1

absorbing

PN-1

squeezing

20

D —

21

#

My My M,

SHA-3 collisions r bitsA »é; L& Lg} |
YL
4 fof
¢ bits
- -
v L

For standard instances where output < r bits, the output will have size ¢/2. This leads to a security of
output collisions of ¢/2.

N
S

#

N
S

SHA-3 collisions bits | »ef; '.3; »éf) ng T, f
YL |
4 I B B
bt ol e e b
YL @) U o

For small instances where output > r bits, in order for the attacker to get a collison on output blocks he
would have to get it on several of them. The inner collisions, or collisions in the capacity part of the inner
stare, are more of an issue since the output = ¢ so the same generic security as output collisions.

#

ol

D

Inner collisions

My, M,

ooy
T@»@»
f

M,

N

i

#

SHA-3

Central to the sponge construction is the concept of state. The state
has alength of 1600 bits and consists of a three-dimensional 5x5x64
table. Each bit of this cube can be addressed with A[x,y,z].

In order to facilitate the description of the applied functions, the
following conventions are used: the part of the state that presents
the word is also called a lane, a two-dimensional part of the state
with a fixed z is called a slice, and all lanes with the same x-coordinate
form a sheet.

(b)

N
S

#

The Keccak-f Permutation

Just as AES has its round transformations, the heart of SHA-3 is a permutation function called Keccak-f.
This function scrambles a block of data, known as the state.

The permutation consists of 24 rounds, and each round is made up of four distinct steps:

1. 0 (Theta): consists of a parity computation, a rotation of one position, and a bitwise XOR. This
provides diffusion, ensuring a change in one bit quickly affects many others.

Clx] = Alx,0] ® A[x, 1] ® A[x,2] ® A[x,3] ® A[x, 4] 0<x<4
D[x] = C[x—-1] ® ROT(C[x + 1],1) 0<x<4
Alx,y] = Alx,y] ® D[x] 0<xy<4

N
S

#

The Keccak-f Permutation

2. p(Rho):is arotation by an offset that depends on the word position, and is a permutation of the
lanes themselves. This further disrupts patterns.

p—m: Bly,2x+3y] = ROT(A[x,y],r[x,y]) ey =4

3. X (Chi): The only non-linear step in the permutation. It consists of bitwise XOR, NOT, and AND
gates. This provides confusion and is the primary defense against cryptographic attacks.

x: A[x,y]:B[x,y]GB((B[x+1,y]) : (B[x+2,y])) 0<xy<4

N
S

#

The Keccak-f Permutation

4. 1(lota): XORs a round-dependent constant into one lane of the state. This breaks the symmetry
between the different rounds.

/. A[0,0] = A[0,0] ® RC

N

#

The Keccak-f Permutation

Instance Output Size d Rate r Capacity ¢
SHA3-224 224 1152 448
SHA3-256 256 1088 542
SHA3-384 384 832 768
SHA3-512 512 576 1024

(z

#

N
S

Parallelization Strategy for SHA-3

Unlike AES, which has different modes of operation (like CTR) to enable parallelism, SHA-3's sponge
construction is inherently serial for a single, long message.

Therefore, high-performance implementations focus on a different kind of parallelism: hashing many
independent messages simultaneously.

e Theworkload: thisis ideal for scenarios like password verification servers or cryptocurrency
mining, where millions of small, separate inputs need to be hashed as quickly as possible.

e GPU Mapping: this workload maps perfectly to the GPU's architecture. We can assign each
independent message to a separate thread block on the GPU, allowing thousands of hashes to be
computed in parallel.

#

CPU Implementation & Optimizations

Optimized CPU (OpenSSL): Unoptimized CPU (Pure C++):

e Thisusesthe industry-standard OpenSSL e Asimple, "textbook" implementation
crypto library. written from scratch.

e Highly optimized using SIMD (Single e [t performs all operations on standard
Instruction, Multiple Data) vector 64-bit integers, one at a time. It does not
instructions like AVX2. These instructions use any vector instructions.
perform the same operation (e.g., XOR) on e This provides a baseline to demonstrate

large 256-bit registers at once, processing the immense performance gains

multiple lanes of the Keccak state in parallel achieved through low-level hardware
within a single CPU core. optimizations.

N
S

#

N
S

GPU Implementation & Optimizations

Our GPU implementation was written in CUDA C++ and designed to maximize parallel throughput.

e Kernel Launch Strategy: The host code launches one CUDA thread block for each message to be
hashed. For our test we used 1 million messages.

e Shared Memory: The Keccak state for each hash is stored in __shared__ memory. This is a small,
extremely fast on-chip memory that all threads in a block can access with very low latency,
avoiding slow reads/writes to the main GPU VRAM during the 24 permutation rounds.

#

N
S

Testing Setup & Metrics

For the testing we decided to implement two separate benchmark scenarios:

e Large File Hashing (Serial Workload): hashing single files of different sizes (1KB, 10KB, 50KB,
500KB, 1MB, 10 MB, 50MB, 100MB). This simulates verifying a file download. It’s a classic serial
task that CPUs are built for.

e High-Volume Hashing (Parallel Workload): hashing numerous small, independent messages (32B,
64B, 128B, 256B, 512B). This simulates tasks like password cracking or blockchain mining. It's a
classic parallel task that GPUs are built for.

#

Testing Setup & Metrics

The hardware used to perform the tests:

e CPU:Intel® Corei7-7700K @ 4.20GHz
e GPU:NVIDIA GeForce GTX 1070

Primary metrics used:

e Throughput (MB/s): The total amount of message data processed per second.

e Time taken (seconds): The raw execution time for the benchmark.

e Speedup Factor (x): How many times faster the GPU is compared to the CPU implementations.

N
S

#

CPU SHA-3 High-Volume Benchmark (Optimized)

Throughput Performance vs Message Length Thr Ci ison Across

P Lengths
~@- SHA3-224 . 32 bytes
~@~ SHA3-256 1 64 bytes
8- SHA3-384 e 128 bytes
2504 —@- SHA3-512 250 W 256 bytes
s 512 bytes
360 200
3 3
= =)
3 % 1504
£ 150 g
5 5
S S
3 3
£ £
100 4
100
50 4
50
5 6 7 8 9 0~
2 2! 2 2 2 (S © > 2
» & &)
Message Length (bytes) R oV 7 P
¥ ¥ ¥ ¥
B ® & &
SHA-3 Algorithm
Time Taken vs. Message Length Thr P ling Effi
—— sHA3-224 124 - SHA3-224
307 —4— sHA3-256 - SHA3-256
—§— SHA3-384 M- SHA3-384
~{~ SHA3-512 ~~ SHA3-512
1.0
25 =
5
B
@
. g
m
g s
] =
8 20 T 08
< 2
9 2
H £
g -
g E
15 E 0.6 1
=
£
£
10 0.44
g’/
W/
= -_g; — 2 20 2 28 22 2 2 2 28 2
\“ ’)/ Message Length (bytes) Message Length (bytes)

#

CPU SHA-3 High-Volume Benchmark (Unoptimized)

Throughput Performance vs Message Length Thr C ison Across Lengths
—@— SHA3-224 . 32 bytes
14 { =@~ SHA3-256 14 64 bytes
-@- SHA3-384 w128 bytes
~@- SHA3-512 . 256 bytes
12 s 512 bytes
12
10
@ @
@ 10 2
= =
= - 8
5 5
a a
£ £
E :
£°® £ s
4
6
2
4
0
2 28 27 2 2 o> & > g
Message Length (bytes) ,57‘« & v,)ﬁ &
& & & &
SHA-3 Algorithm
Time Taken vs. Message Length Throughput Scaling Efficiency
—4— SHA3-224 0.12 - SHA3-224
—4— SHA3-256 —l- SHA3-256
—4— SHA3-384 —- SHA3-384
60 —4— SHA3-512 ~- SHA3-512
0.10
Il
50 H
7
o o 0.08
3 @
g H
S 40 >
< 9
E 3
= £ 0.06
w i}
g =
E30 2
2
)
£
2
£ 004
20
0.02
\ N / 10
W<
= -_g; — 2 2 2 2 2 2 2° 2’ 2 2°
\“ ’)/ Message Length (bytes) Message Length (bytes)

#

GPU SHA-3 High-Volume Benchmark Results

Throughput Performance vs Message Length Thr put C ison Across Lengths
—@- SHA3-224 . 32 bytes
~@— SHA3-256 1 64 bytes
—@- SHA3-384 w128 bytes
1200 | —@— SHA3-512 1200 256 bytes
= 512 bytes
1000
1000
» a
ﬂzﬂ ﬂiﬂ 800
i H
-§‘ 800 -§,
H 3 600
S e
600 400
200
400
0
25 26 2% 25 2° > © ‘7
o &)
Message Length (bytes) & & & W
B e B e
SHA-3 Algorithm
Time Taken vs. Message Length Throughput Scaling Efficiency
0.6 4 sHA3-224 - SHA3-224
| ~4— SHA3-256 - SHA3-256
—§— SHA3-384 10 - SHA3-384
4~ SHA3-512 - SHA3-512
0.5
Ol
z 8
]
2 Y
c 0.4 o
8 =
S 2
8 >
2 9
$ HI
S
5 0.3 “E-'
@ 0.
g o
E 2
)
3
£ 4
0.2 F
2
\\l\r / 01
W
= -_g; — 2 2 27 2 2 2 2 27 2 2
\“ ’)/ Message Length (bytes) Message Length (bytes)

#

Comprehensive SHA-3 High-Volume Benchmark Comparison

Thr C ison by Algorithm SHA3-256 Thr vs M Length Performance Speedup vs CPU Unoptimized
935.25 931.32 GPU -8~ GPU = GPU 106.2x
= CPU Optimized ~#- CPU Optimized = CPU Optimized
e CPU Unoptimized ~#— CPU Unoptimized 100
1200
1000
80
@
3
£ 3 800 -
Bl) g
2 : 8 60
3 s
g £)
£ 2 600 3
o 2 a
& £ &
3 E
)
S 40
400
200 20
o] A—
0
SHA3-224 SHA3-256 SHA3-384 SHA3-512 g o | o 2" 2 SHA3-224 SHA3-256 SHA3-384 SHA3-512
SHA-3 Algorithm Message Length (bytes) SHA-3 Algorithm
Average Pr ing Time vs M. Length Overall Impl ion Rankii T vs M Length Scali
i 4
-8- GPU -8~ GPU
-~ CPU Optimized - CPU Optimized
A~ CPU Unoptimized —#&— CPU Unoptimized
2 e
CPU Unoptimized - 8.80 MB/s
10t 10 A
g
2
g
&
s 509
= H
g CPU Optimized 131.05 MB/s g
§ Los
i 3
o 10°
&
§
2 0.7
normes OO
&\B“\’(/Z o 03
2
2D

= :g: —2 2 2 & ol = o 100 200 300 400 500 600 700 800 ~ o 2> o 2
\“ ’)/ Message Length (bytes) Overall Average Throughput (MB/s) Message Length (bytes)

#

CPU SHA-3 Large File Benchmark (Optimized)

Throughput Perfori vs File Size Throughput Comparison Across File Sizes
= 0.0 MB
Py & e 0.01 MB
~e W 0.05 MB
400 400 = 0.49 MB
mw 1.0 MB
s 10.0 MB
w= 50.0 MB
= 100.0 MB
300
+ - 300 4
g g
= =
5 5
o o
))
g 200 3 2001
= =
= [
100
100 A
—@- SHA3-224
—@— SHA3-256
—@- SHA3-384
01 =@ SHA3-512
- r . ; r 0-
1072 107! 10° 10t 10? SHA3-224 SHA3-256 SHA3-384 SHA3-512
File Size (MB) SHA-3 Algorithm
Processing Time vs File Size Throughput Scaling Efficiency
~ll- SHA3-224 —h— SHA3-224
~- SHA3-256 —#— SHA3-256
—- SHA3-384 25000 4 —A— SHA3-384
- SHA3-512 =&~ SHA3-512
o
&
s
o
. @ 20000 1
3 =
< 5]
5
K o=
o Z 15000 1
£ z
2 2
@ S
@ &
g & 10000 A
< 5
a o
<
=3
£
2
£ 5000 4
\B\l\, (/ 04 r LS A—4
& oS 2 102 10 10° 10! 10? 102 10 10° 10t 10?
NS /= A :
\“ ’)/ File Size (MB) File Size (MB)

#

CPU SHA-3 Large File Benchmark (Unoptimized)

Throughput Perfor: vs File Size Throughput Comparison Across File Sizes
80 80 -
= 0.0 MB
e 0.01 MB
704 70 W 0.05 MB
= 0.49 MB
1.0 MB
604 60 4 = 10.0 MB
w= 50.0 MB
= 100.0 MB
9 501 @ 501
g 3
1= 3
5]
£ 404 5404
S ES
e 2
£ £ 30
304 30
20 A
20 A
—@- SHA3-224
—@- SHA3-256 10
104 —@- SHA3-384
—@~- SHA3-512
r r T T r 0
1072 107t 10° 10! 102 SHA3-224 SHA3-256 SHA3-384 SHA3-512
File Size (MB) SHA-3 Algorithm
Processing Time vs File Size Throughput Scaling Efficiency
7000 o
-~ SHA3-224 —h— SHA3-224
- SHA3-256 —h— SHA3-256
1004 —- SHA3-384 6000°1 —h— SHA3-384
-~ SHA3-512 —h— SHA3-512
o)
=
<
5]
__ 10714 & 5000
5 =
2 3
2 a
g é‘ 4000
@ 10724 <
= 2
= @ 3000 A
5 g
&=
8 10721 o
= 22000 A
=
3
" £
107 1000 4
NV 04 r 4 +—aA
& Z 10-54
S T T T T - - - - - r
= :"g‘: — 1072 107! 10° 10! 10? 1072 107! 10° 10! 102
\“ ’)/ File Size (MB) File Size (MB)

#

GPU SHA-3 Large File Benchmark Results

Thr hput Perfor vs File Size Throughput Comparison Across File Sizes
600 | 600
~@- SHA3-224 = 0.0 MB
~®~ SHA3-256 e 0.01 MB
~@- SHA3-384 W 0.05 MB
500 4 SHA3-512 500 4 = 0.49 MB
e 1.0 MB
= 10.0 MB
= 50.0 MB
400 400 4 = 100.0 MB
z z -
o o
Z =
=] =
g 700 2 300
= =
o =
3 3
e e
£ S
200 4
200 A
100 A
100 A
0
r r T T r 0
1072 107t 10° 10! 102 SHA3-224 SHA3-256 SHA3-384 SHA3-512
File Size (MB) SHA-3 Algorithm
Processing Time vs File Size Throughput Scaling Efficiency
~l- SHA3-224 —A— SHA3-224
~I- SHA3-256 ~A—~ SHA3-256
~i- SHA3-384 —A— SHA3-384
10719 SHA3-512 2000 SHA3-512

1500

1000 A

Processing Time (seconds)

500

Throughput Efficiency (MB/s per MB of file)

104

1072 1071 10° 10t 102 1072 107t 10° 10t 102
File Size (MB) File Size (MB)

#

GPU SHA-3 Serial Benchmark Results

Throughput Perfor: vs File Size Throughput Comparison Across File Sizes
= 0.0 MB
e 0.01 MB
m 0.05 MB
20 A = 0.49 MB
201 == 1.0MB
o o—O W 10.0 MB
w | w 50.0 MB
= 100.0 MB
215+ @15
ot =
5 5
=9 o
))
g 10 g 10+
S 3
5
@~ SHA3-224
=@~ SHA3-256
~@- SHA3-384
~@~ SHA3-512
0 T r T T T
1072 107t 10° 10! 102 SHA3-224 SHA3-256 SHA3-384 SHA3-512
File Size (MB) SHA-3 Algorithm
Processing Time vs File Size Throughput Scaling Efficiency
10'Y @ sHA3-224 —A— SHA3-224
-~ SHA3-256 ~A— SHA3-256
~i- SHA3-384 —h— SHA3-384
~{~ SHA3-512 2000 ~f SHA3-512
100 =
=
=
) 3
B 2
§ 1074 « 15001
o %)
3 Z,
> >
:
= G
210724 & 10001
@
& =
o g \
10-34 =
500
1074
\ dU / 0 L B L 4 4
\35;0 1072 107* 10° 10* 10? 1072 107! 10° 10t 10?
%‘@’ﬁ/j File Size (MB) File Size (MB)

#

Comprehensive SHA-3 Large File Benchmark Comparison

(GPU Parallel vs GPU Serial vs CPU Optimized vs CPU Unoptimized)
Th C ison by Algorithm SHA3-256 Throughput vs File Size Performance jup vs CPU d
50 348.98 = GPU Parallel ~8- GPU Parallel = GPU Parallel 7.6x
336.27 e GPU Serial ~&- GPU Serial e GPU Serial
m== CPU Optimized - CPU Optimized m=s CPU Optimized
= CPU Unoptimized ~A~ CPU Unoptimized 7
56 500
6
255.22
250 244.53 400
@ 223.77 B
E 210.85 =
£ 200 [B
£ 185.55 o &
8§ 5 300 a4
g £ 2
H & 3
3 161.36 g
) £ &
& 150 =
E 3
200
100
2
Wk 0.7 100
50 1
3.7 - 55
1.3 -
7.9 7.9 54
° 0
SHA3-224 SHA3-256 SHA3-384 SHA3-512 10~ 10 10° 10t 102 SHA3-224 SHA3-256 SHA3-384 SHA3-512
SHA-3 Algorithm File Size (MB) SHA-3 Algorithm
" Average Processing Time vs File Size Overall ion i Thr vs File Size Scaling
10
~®~ GPU Parallel ~®~ GPU Parallel
0~ GPU Serial 14 0~ GPU Serial
- CPU Optimized -~ CPU Optimized
~A— CPU Unoptimized ~A— CPU Unoptimized
: GPU Serial 17.63 MB/s p
100
12
:'é' 10 10
g CPU Unoptimized 47.01 MB/s
= z
g g
E g o8
£ o]
g g
g]
H “os
& GPU Parallel 210.13 MB/s
g
<102
04
10-4 CPU Optimized L51MB/s o,
&\Béb /
= ‘.Gf — 00
10 10 10° 10t 107 0 50 100 150 200 250 10 100 10t 107
‘ ’ File Size (MB) Overall Average Throughput (MB/s) File Size (MB)

#

Result analysis

From these results we can say that the optimal hardware for SHA-3 hashing is entirely dependent on the
nature of the workload. There is no single "best" architecture, the choice is a trade-off between serial
speed and parallel throughput.

Serial Workloads:

The Optimized CPU is the clear winner. The OpenSSL implementation, with its high clock speed and use
of AVX instructions, consistently outperforms both the GPU and the unoptimized CPU.

GPU performance is limited by overhead. For smaller files (<10 MB), the GPU was even slower than the
unoptimized CPU due to the high latency of memory transfers and kernel launches. This overhead
becomes less significant as file size increases.

N
S

#

N
S

Result analysis

From these results we can say that the optimal hardware for SHA-3 hashing is entirely dependent on the
nature of the workload. There is no single "best" architecture, the choice is a trade-off between serial
speed and parallel throughput.

Parallel Workloads:

The GPU is the clear winner. In this scenario, the GPU's massively parallel architecture provides a
speedup of over 10x compared to the optimized CPU and over 100x compared to the unoptimized
version.

This proves the GPU's superiority for tasks like password cracking, blockchain calculations, or handling
thousands of simultaneous server requests.

#

Result analysis

From these results we can say that the optimal hardware for SHA-3 hashing is entirely dependent on the
nature of the workload. There is no single "best" architecture, the choice is a trade-off between serial
speed and parallel throughput.

Impact of optimization:

The performance gap between the simple C++ implementation and the optimized OpenSSL library is
enormous, highlighting that using a professionally optimized library is critical for any real-world
application.

N
S

#

Bibliography

e C.Wang, X. Chu "GPU Accelerated Keccak (SHA3) Algorithm"

e W.Stallings, L. Brown, “Computer Security: Principles and Practice”, Fourth edition, Pearson 2018

e A.Dolmeta, M. Martina, G.Masera, “Comparative Study of Keccak SHA-3 Implementations”,
Cryptography 2023, 7, 60

e G.Bertoni, J. Daemen, M. Peeters, G. Van Assche and R. Van Keer, “Keccak implementation
overview”, SHA-3 competition (round 3), 2012

e R.Boissier, C. Nous, Y. Rotella, “Algebraic Collision Attacks on Keccak”, IACR Transactions on
Symmetric Cryptology, 2021(1), 239-268

N
S

#

#

