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ABSTRACT

Fingerprint enhancement is a crucial preprocessing step in fingerprint recognition. Despite being the
most widely used and well-known biometric trait, extracting features from low-quality fingerprint
images remains a significant challenge. The purpose of this paper is to develop a biometric system
that integrates and evaluates various enhancement strategies. Specifically, we compare multiple
enhancement techniques by implementing them within a fingerprint recognition pipeline and assessing
their impact on feature extraction and overall recognition performance. Through this comparative
analysis, we aim to identify the most effective approach for improving fingerprint recognition
performance.
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1 Introduction

Fingerprint recognition is one of the most reliable and widely used biometric methods for personal identification
and authentication. Over time, the technology has evolved significantly, with one of the most crucial preprocessing
steps being fingerprint enhancement. This process plays a pivotal role in improving the quality of fingerprint images,
particularly when dealing with noisy or low-resolution inputs. Various enhancement techniques have been developed
over the years, each targeting different aspects of fingerprint image quality and feature extraction.

The foundational work in fingerprint enhancement was initiated by Hong et al. [[1]], whom developed techniques based on
Gabor filters and frequency analysis to improve contrast and ridge structure. Hong’s approach laid the groundwork for
more advanced methods. Peter Kovesi [2] later expanded upon Hong’s work, refining the estimation of the orientation
field and improving robustness in handling noisy or degraded images. More recently, deep learning-based techniques,
such as those proposed by Raffaele Cappelli [3} 4,15, 6], have revolutionized fingerprint enhancement. These methods
leverage convolutional neural networks (CNNs) to automatically learn complex features from fingerprint images,
providing significantly improved performance over traditional methods. Moreover, Cappelli’s research has introduced
important considerations for evaluating performance at various stages of the enhancement process, particularly the
creation of the orientation map of ridges and the estimation of frequencies.

This paper aims to compare and contrast different enhancement strategies, from the classical approaches to the most
recent techniques not base on machine learning and deep learning. We deside to reinforce the old fashion techniques
to have a very simple and straightforward biometric system. The paper is structured as follows: First, we provide an
in-depth analysis of the common steps involved in fingerprint enhancement, including segmentation, orientation field
estimation, frequency estimation, and filtering. Each of these steps will be discussed in detail, outlining the evolution of
methods used over time. Following this, we present the construction of a fingerprint recognition system built upon these
preprocessing steps. Finally, we evaluate the performance of the system, comparing the results of various enhancement
techniques based on standard performance metrics.
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2 Enhancing Pipeline

In this section, we describe the general approach behind the stages of fingerprint enhancement. These stages can
be broadly divided into four steps: defining the Region of Interest (ROI), estimating the ridge orientations and their
frequencies, and using the previous information to enhance the visibility of the ridges.

Each of these stages can be addressed using different algorithms and methodologies, each with its own advantages and
limitations. Our goal is to analyze and compare multiple approaches for each stage, and evaluating their impact on the
overall performance of the fingerprint recognition system (see Sec. [6).

2.1 Segmentation

A critical step in fingerprint recognition is segmentation, which involves isolating the fingerprint pattern (ROI) from the
background (see Fig. [T). This step is essential as it removes noise and irrelevant information, enabling more accurate
fingerprint recognition algorithms. Over the years, various segmentation techniques have been proposed. In this paper,
we follow the KISS (Keep It Simple and Straightforward) principle, as adopted by Cappelli, to compare simple yet
effective segmentation methods developed by Kovesi P. in his matlab code [2]], and Cappelli R.[4].

A 4

Figure 1: An example of fingerprint segmentation. (a) A fingerprint, (b) Segmentation mask, (c) Segmentation mask
contour overlaid on the fingerprint.

2.1.1 Hong’s segmentation

Hong distinguishes between recoverable and unrecoverable regions in fingerprint images by analyzing the shape of
the wave formed by local ridges and valleys. In Hong’s algorithm, this distinction is based on three key features that
characterize the sinusoidal-shaped wave: amplitude («), frequency (), and variance () (see Fig. @

(1] Let X[1],X[2],..., X[!]] be the x-signature of a block centered at (i, j) (see Sec. [2.4.1). The three features
corresponding to pixel (block) (i, 7) are computed as follows:

1. «a = (average height of the peaks — average depth of the valleys).

2. B= T(ij) , where T'(4, j) is the average number of pixels between two consecutive peaks.

3y = P (X0 - Sl X))

Hong et al. also proposed a classification method to distinguish between recoverable and unrecoverable regions. Several
fingerprint images were manually labeled, and the three extracted features were computed for each region, resulting in
2,000 three-dimensional patterns. A squared-error clustering algorithm was applied to identify six clusters, with four
corresponding to recoverable regions and two to unrecoverable regions. These six cluster centers were then used as
prototypes in a one-nearest neighbor (1NN) classifier to classify each w x w block of an input fingerprint image. If the
percentage of recoverable regions in an image was below a threshold, the fingerprint was rejected.

This approach is particularly useful for rejecting poor-quality fingerprints during enrollment. However, the original
work does not specify the dataset(s) used for gathering the training data, making fine-tuning of the classification process
a challenging task. This highlights how preliminary steps in fingerprint enhancement, such as segmentation, require
significant effort to achieve optimal performance.
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Figure 2: Sinusoidal wave from x-signature.[1]]

The motivation behind presenting Hong’s method is twofold. First, it serves as a reference to highlight how the
approaches adopted by Kovesi and Cappelli simplify segmentation by relying on thresholding techniques rather than
complex feature-based classification. Second, it illustrates the shift in fingerprint processing pipelines over the years.
While Hong’s method applies segmentation only after computing ridge orientations and frequencies, modern approaches
prioritize segmentation in the early stages of enhancement. Notably, the x-signature used in Hong’s method for
segmentation will reappear later in the frequency estimation stage (see Sec. [2.4), reinforcing the interdependence of
these enhancement steps.

2.1.2 Kovesi’s segmentation

While Hong’s segmentation method involves multiple parameters and a detailed analysis of the ridge structure. Kovesi’s
method adheres to the KISS principle by employing a single threshold-based criterion, avoiding the need for complex
wave analysis. This makes the method more straightforward to understand and implement, while maintaining effective
segmentation in almost the case.

In a fingerprint image, background regions generally exhibit very low gray-scale variance, whereas foreground regions
have significantly higher variance. This method begins by dividing the image into blocks and calculating the gray-scale
variance for each of them. If the variance is below a predefined global threshold, the block is classified as part of the
background; otherwise, it is assigned to the foreground [[7].

The gray-level variance for a block of size W x W is defined as:

1 W-1w-1
V() = 575 D > (I(0,5) = M(k))? )
i =0

=

<

where V' (k) is the variance for block k, (%, j) is the grey-level value at pixel (i, j), and M (k) is the mean grey-level
value for the block k.

Figure 3: Failed segmentation from Kovesi’s pipeline.



Fingerprint enhancement

However, this method is not always reliable, as it may produce segmentation results with holes or artifacts within the
fingerprint region. Unlike Cappelli’s method, which includes a dedicated post-processing step to refine the segmentation
mask, Kovesi’s approach does not guarantee a seamless foreground mask. An example of a failed segmentation result is
shown in Fig. 3]

This issue is particularly noticeable in images captured with capacitive sensors, where certain regions of the fingerprint
(especially those with uniform pressure) tend to appear darker and less defined. Unlike optical sensors, which capture
ridges based on light reflection and absorption, capacitive sensors rely on electrical conductivity differences between
ridges and valleys. When finger pressure is too high or the sensor surface conditions vary, ridges may appear less
prominent, leading to a lower contrast and variance in the captured image. As a result, Kovesi’s variance-based
segmentation may incorrectly discard these regions, impacting the overall fingerprint recognition process.

2.1.3 Gradient Magnitude Filtering Segmentation (GMFS)
The GMFS method, proposed by Cappelli R. [4], was designed with three main objectives:
* It should rely on a small number of simple features (ideally only one).

* It should consist of a short sequence of well-known and efficient image processing steps.

* It should require only a few parameters to be configured.

The core of GMFS is based on the estimation of the gradient magnitude at each pixel. Given an input fingerprint image
F, the horizontal and vertical derivative approximations of F, denoted as 2£ and %—5, are computed using convolution

ox
with Sobel filters .S, and Sy:

OF OF

The gradient magnitude M is then computed as:
aF\?  (9F\?
M= —_— —_— 3
\/( Oz ) i < Ay ) ®

Since the gradient magnitude is typically high at ridge-valley transitions (see Fig. f]b), a threshold ¢ is computed to
separate the fingerprint foreground from the background:

t = percentile(M,95) - T 4)

where percentile(M, 95) is the 95th percentile of matrix M and 7 is a parameter of the method. Using the 95th
percentile instead of the maximum value mitigates the impact of noise-induced outliers.

To further reduce noise and improve segmentation, the gradient magnitude is smoothed using a Gaussian filter G :

M=M+G, 5)
The Gaussian filter (G is defined as:
1 _x24y?
Gop(z,y) = 5—5e 2o ©)
2mo

It is discretized over a gs; X g5 grid, where gi 30 - 2 + 1, ensuring that most of the Gaussian values are contained

=
according to the three-sigma rule see Fig. 4{c).

The initial segmentation mask .S; is obtained by applying a thresholding operation on the smoothed gradient magnitude:

'The "three-sigma rule," also known as the 68-95-99.7 rule, is a statistical guideline that applies to a normal distribution (also
known as a Gaussian distribution). It describes the percentage of data points that fall within a certain number of standard deviations
from the mean of the data.
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foreground, if Mi,j > t,
background, otherwise.

sitid) = { @

Note that ¢ is computed from the non-averaged gradient magnitude M, while thresholding is applied to the averaged
gradient magnitude M (see Fig. d).

To refine the segmentation mask and enhance the quality of the segmentation, the GMFS method goes beyond the
basic thresholding by applying a series of postprocessing steps. These steps are crucial in overcoming the limitations
of simpler thresholding-based methods, such as those used in Kovesi’s approach, and help to better handle noise and
imperfections in the segmented image. The postprocessing steps include:

* Morphological closing: A dilation followed by erosion using a 3x3 disk-shaped structuring element, repeated
n. times. (see Fig[e)

» Largest connected component selection: If the foreground contains multiple components, only the largest is
retained. (see Fig[Af)

* Hole filling: Any holes not adjacent to the image border are filled.(see Fig f)
* Morphological opening: An erosion followed by dilation, repeated n,, times. (see Figfh)
* Final cleanup: If the previous step creates multiple components, the largest is selected again.

Figure 4: Tllustrate the steps of GMFS method: (a) original image, (b) computed gradient magnitude of the image, (c)
smoothed gradient magnitude with Gaussian filter, (d) thresholding operation on the average gradient magnitude, (e)
noise-induced holes are partially filled, (f) bottom left artifact is removed, (g) remaining holes are filled and (h) small
protrusion is eliminated. (i) Final segmentation mask, and (j) Ground truth.[4]

The GMFS method meets its design goals:

* It is based on a single feature: the gradient magnitude.

* It consists of efficient, well-known image processing operations: convolutions, thresholding, morphology
operations, and connected component labeling.

e It requires only four parameters: 7, o, n., and n,, which have been set according to the values provided by
Cappelli in his paper, based on the datasets he used for testing.

As it was mention before, the GMFS method was thoroughly tested using publicly available fingerprint databases from
the first three Fingerprint Verification Competitions (FVC2000, FVC2002, and FVC2004), which are widely regarded
as standard benchmarks for fingerprint comparison algorithms. These databases, along with the manually marked
segmentation ground truth made available by Thai, Huckemann, and Gottschlich, have become essential for evaluating
fingerprint segmentation methods. (Dataset on Kaggle)


https://kaggle.com/datasets/d4c335647df87930a18e7a28b49c049ebb689dda2297e6ffe51ebb323c33f5b4
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Cappelli’s work utilized these databases to fine-tune the parameters of the GMFS method, ensuring that it performs
optimally across various fingerprint qualities. In our work, we will particularly focus on testing the FVC 2002 databases,
which will also be used in the evaluation phase of the recognition system discussed in Section [6]

2.2 Fingerprint Orientation Field

The orientation field of a fingerprint image defines the local orientation of the ridges contained in the fingerprint (see
Fig. B). Orientation estimation is a fundamental step in the enhancement process, as the subsequent filtering stage
relies on the local orientation to effectively enhance the fingerprint image. Moreover, it plays a crucial role in feature
extraction, particularly in detecting minutiae and singularities, which will be covered in Section [3]and[5]

Both Kovesi and Cappelli approaches follow a gradient-based method to estimate the orientation of the ridges, avoiding
the explicit division into blocks typical of Hong’s method [1]]. However, while Kovesi formalizes the problem in terms
of gradient moments, Cappelli adopts a more direct formulation based on the weighted average of the squared gradients.
In this section, we analyze both techniques in detail and highlight their differences.
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Figure 5: Orientation map.[5]]

2.2.1 Kovesi’s Orientation Estimation

Given a normalized fingerprint imageEl, the algorithm proceeds as follows:

1. Gradient Computation: The gradients 0,(i,j) and 9, (i, j) are computed at each pixel (4, j) with the
derivative of a Gaussian filter. The derivatives of the Gaussian kernel in the = and y directions are used to
compute the image gradients:

O, =1xG,, O0y=1xG, 8)
where G and G, are the derivatives of the Gaussian kernel.

2. Gradient Moments Computation: To estimate the orientation field, the second-order gradient moments are
computed as follows:

M,> = 0?

2
e My =0y, Myy =00y C)
These moments are crucial because they provide a measure of the dominant gradient direction in each region
of the image. To enhance robustness and reduce the influence of local noise, these moments are smoothed

using a Gaussian filter with standard deviation oy:

M;Dz = Mzz * Gb, M;"’ = Myz * Gb, M;y = Q(sz * Gb) (10)

*Image normalization is a preprocessing step that adjusts the gray-level values of an image to reduce variations along the ridges
and valleys, making it easier to extract ridge orientation.



Fingerprint enhancement

This step ensures that small variations in the local gradient field do not result in abrupt changes in orientation
estimation.

3. Orientation Field Computation: The local orientation (i, 7) is determined analytically using the smoothed
gradient moments. The angles are double because, in this way, opposite gradients reinforce each other, while
perpendicular gradients cancel out.

M/
sin(20) = =Y

VM + (M3 - M)

(1)
M, — M
cos(20) = My )
VME + (MR — M)
The final orientation is then given by:
o1 .

0(i,j) = 5 + iarcan (cos(26), sin(26)) (12)

4. Smoothing of the Orientation Field: Since the estimated orientation field can be noisy due to fingerprint
artifacts, minutiae, or ridge corruption, a final smoothing step is applied. This ensures a more coherent
orientation field that better represents the overall ridge flow. The approach consists of convolving cos(26) and
sin(26) with a Gaussian filter:

Sy (i,7) = cos(20) x G

13
Sy(i,7) = sin(20) * G (13)
The final smoothed orientation is then recomputed as:
| - -
0(i, ) = 5 + iarctan2 (Sy(i,7),S:(4, 7)) (14)

While Kovesi’s method provides a robust estimation of the orientation field through gradient moments and a fixed
Gaussian smoothing, Cappelli introduces additional preprocessing steps and an adaptive smoothing strategy to further
improve robustness, especially in noisy regions.

2.3 GBFOE (Gradient-Based Fingerprint Orientation Estimation)

In this section, we present a detailed explanation of the GBFOE method for fingerprint orientation estimation, em-
phasizing its mathematical formulation and key differences from Kovesi’s approach. While both methods rely on
gradient-based orientation estimation, they differ in how they process and aggregate gradient information. GBFOE
incorporates a preprocessing step to enhance contrast and reduce noise before computing the orientation field, whereas
Kovesi’s method directly computes the orientation using gradient moments. Additionally, GBFOE dynamically adjusts
the Gaussian smoothing parameter based on local orientation coherence, allowing for adaptive filtering that preserves
details in high-quality regions while improving robustness in noisy areas. For a more comprehensive discussion, refer
to [5]], [8]] and [9]].

The first step in GBFOE is preprocessing the fingerprint image F' using the segmentation mask S. This preprocessing
includes:

1. Contrast Stretching: The extreme gray level values are clipped based on a specified percentage, denoted by
sp, to enhance image contrast. Let H be the gray level histogram of the image F'. The lower and upper bounds
for clipping are determined by the gray levels L and U such that:

L 255

 H(iy~sp-N, > H(i)=sp-N (15)
i=U

i=0

where N is the total number of pixels in the image. The pixel intensities are then stretched to the full dynamic
range [0, 255].
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2. Gaussian Smoothing: A 2D Gaussian filter with standard deviation o, is applied to the contrast-stretched
image to reduce noise:

F'=FxG,, (16)
where G, is a 2D Gaussian kernel with standard deviation .
3. Median Filtering: A median filter with a filter size of m,, is applied to further reduce noise:

F"" = median,,  (F") (17)
where median,,,,, denotes the median filtering operation with a window size of m,,. The resulting preprocessed
image is denoted as F"'.

Gradient Averaging and Orientation Estimation

The local gradients of F" are computed using Sobel operators, similar to Kovesi’s implementation. Let 9, (¢, j) and
0y (%, §) be the horizontal and vertical gradients at pixel (¢, j), respectively. The squared gradients are then computed:

Gr=02, Gr=02, Goy=2-0,-0, (18)

Kovesi’s formulation in terms of gradient moments is conceptually equivalent to the GBFOE transformation, where the
squared gradient terms G2, GZ, Gy play the same role. Both methods use a squared formulation to ensure that opposite
gradients reinforce each other rather than cancel out, thereby improving the robustness of the orientation estimation.
Like Kovesi, GBFOE smooths these terms using a Gaussian filter before computing the final orientation field.

These squared gradients are smoothed using a 2D Gaussian filter with standard deviation &:
G2=G2%Gs, G}=G2%Gs, G, =Guy*Gs (19)
The local orientation 6(3, j) at each pixel (2, j) is then computed as:

G2-G?+ L

D+ (20)

Ty’

1
0(i, ) = 5 arctan 2(G"

Local Orientation Coherence and Final Estimation

To improve the robustness of the orientation estimation, a measure called local orientation coherence (C'oh) is computed.
The coherence at each pixel is calculated as:

V(G =Gy +ac,

Coh(i, j) =
a, +a,

21

The standard deviation o of the Gaussian filter used in the final orientation estimation is dynamically adjusted based on
the local orientation coherence, inside the segmentation mask .S. This ensures that in regions where the fingerprint
ridges are well-defined, less smoothing is applied to preserve fine details, while in noisy or low-quality regions, stronger
smoothing is applied to improve stability.

>2i.5(Sij - Cohij)
A T A : 22)
( Zi,j Si,j

Finally, the second smoothed orientation field is obtained by convolving the smoothed squared gradients with a Gaussian
filter G, with the adjusted standard deviation:

G2 =Gl+Gy, G2=G2xGyy, Gy =Gl *G, (23)

The final orientation field is then:
0(i,7) = ~ arctan 2(G7. G2 — G2y + T 24
(27])—581‘63,1’1 ( zyr T y)+§ 24)
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Parameters

The method is controlled by five main parameters:

* sp: the contrast stretching clipping percentage,

* o,: the standard deviation of the Gaussian smoothing filter,

* my: the size of the median filter,

e ¢: the standard deviation of the Gaussian filter for the first orientation estimation,

* k,: a multiplicative factor to adjust o in the final smoothing.

These parameters influence the accuracy of the estimated orientation field and, consequently, the overall performance of
the fingerprint recognition system built upon this method. To optimize the parameter selection, Cappelli R. conducted
a fine-tuning process using datasets distinct from the FVC benchmarks, ensuring that the final evaluation remains
unbiased.

Cappelli’s fine-tuning approach involved testing the method on a variety of fingerprint datasets captured with different
sensors and under varying quality conditions. The optimization focused on minimizing orientation estimation errors,
particularly in low-quality fingerprint regions where ridges are fragmented or corrupted by noise. The evaluation metric
used in this process was the Root Mean Square Deviation (RMSD) between the estimated and ground truth orientation
fields. RMSD is computed as follows:

>0, Sig - do(0;5,0; )
Ei,j Si:]‘

RMSD(6,6,8) = (25)

where 6 represents the estimated orientation field, 0 is the ground truth, S is the ground truth segmentation mask, and
d¢(6,0) is the angular difference:

d¢(9,é):(9—é+g) modﬁ—g (26)

By leveraging this metric, the fine-tuning process aimed to ensure robust orientation estimation across various fingerprint
datasets. However, it is important to emphasize that the FVC datasets were not used in this tuning phase. These datasets
will instead be employed exclusively in the final evaluation (Section[6)) of our fingerprint recognition system, allowing
for an objective assessment of its generalization capabilities.

2.4 Ridge Frequency Estimation

The ridge frequency represents the local spacing between fingerprint ridges and is typically measured in terms of the
number of ridges per unit distance. Various methods have been proposed, each with different approaches to handling
noise, singular points, and irregular ridge patterns.

This section presents two methods for ridge frequency estimation: Kovesi’s method, which is based on compute a
mean global frequency and XSFFE, a more recent approach that leverages x-signatures to achieve efficient and robust
frequency estimation proposed by Cappelli [6].

2.4.1 Kovesi’s frequency estimation

In regions where neither minutiae nor singular points are present, the grayscale levels along the ridges and valleys can
be approximated as a sinusoidal wave perpendicular to the local ridge orientation (see Fig[2). Thus, the local ridge
frequency is an inherent characteristic of fingerprint images. Given a normalized image I and an orientation image ©,
the ridge frequency estimation follows these steps:

1. Divide the image I into non-overlapping blocks of size w x w (typically 16 x 16 pixels).

2. For each block centered at pixel (4, ), define an oriented window with the same dimensions aligned with the
ridge orientation, taken from the orientation map O.
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3. Compute the x-signature X [k] of ridges and valleys within the oriented window:
X[k = I(uv) (27)

where the coordinates (u, v) of the oriented window are given by:

w 1
w=i+(d—2)cos(0(i, ) - (k= 5)sin(O(i,))
(28)
w 1

0=+ (d=2)sin(O(i,1) + (5 + k) cos(©(i, )
If no singular points or minutiae are present, the x-signature resembles a discrete sinusoidal wave, whose
frequency corresponds to that of the ridges and valleys in the block.

4. The ridge frequency W (4, j) is determined by 7T'(4, j), the average number of pixel between two consecutive
peaks in the x-signature:
1
W(i,j) = =——=
For a fingerprint image scanned at a fixed resolution, the value of the frequency of the ridges and valleys in a
local neighborhood lies in a certain range. For a 500dpi image (all the databases used for the evaluation in
Section@use this resolution), this range is [1/3, 1/25]. Therefore, if the estimated value of the frequency is out
of this range, then the frequency is assigned a value of 0 to indicate that a valid frequency cannot be obtained.
In this manner, the mean global frequency considered only the well-defined regions for the computation.

(29)

Despite its extreme simplicity, this method introduces significant compromises, penalizing particularly sensitive areas
such as those adjacent to minutiae and singularities, which are characterized by structural deformations. Furthermore,
the assumption of a constant distance between ridges is not always valid; different regions of the finger can experience
varying pressures during acquisition, leading to non-linear deformations.

24.2 X-Signature-based Fingerprint Frequency Estimation (XSFFE)

[6]] XSFFE (X-Signature-based Fingerprint Frequency Estimation) is a spatial-domain method that relies on traditional
image processing techniques and the computation of the x-signature. It follows the KISS principle, consisting of a
straightforward sequence of well-established image processing operations, easily implemented using standard computer
vision libraries such as OpenCV.

The process begins with a preprocessing step, where median filtering and Gaussian smoothing are applied to reduce
noise and generate smoother x-signatures. The x-signature is then computed within a 23 x 43 window, considering
only foreground pixels that are at least 11 pixels away from the background. This constraint ensures that low-quality
regions near the background, which might lead to inaccurate estimations, are excluded. The choice of these parameters
is crucial: a window that is too small becomes susceptible to local noise, such as small cuts or abrasions on the fingertip,
whereas a window that is too large reduces accuracy in high-curvature areas. Similarly, setting a proper distance from
the background helps to exclude noisy regions, but an excessive value may negatively impact accuracy.

For each analyzed pixel, both minima and maxima of its x-signature are examined. The distances between consecutive
maxima represent the spacing between valleys, while the distances between consecutive minima indicate the spacing
between ridges ﬂ By incorporating both types of distance for the discrimination, the method achieves a more robust
estimation. If the number of local maxima and minima is at least a specified threshold, then the ridge frequency
analysis is performed. Furthermore, outlier distances between consecutive peaks / valleys (filtered with a minimum and
maximum period) are identified by first computing the median distance and then discarding any value differing by more
than two pixels from the median. If at least four valid distances remain, the ridge frequency is estimated as the inverse
of their average.

In cases where a frequency value cannot be reliably computed, either due to proximity to the background or an
insufficient number of valid distances, missing values are determined using an inpainting technique. Finally, a Gaussian
filter is applied to smooth the frequency map, ensuring a consistent and refined output.

As Cappelli also pointed out, there have been very few advances in this field in recent years, likely due to the difficulty
in constructing datasets that contain true ridge frequencies. This process is typically performed manually by experts. In

3Cappelli’s analysis is performed on a grayscale image where the highest pixel values correspond to white regions (valleys) and
the lowest to dark regions (ridges).

10
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[6]], a method is also presented for constructing datasets that include ground truth segmentation masks, true orientation
fields, and true ridge frequencies, stored in four grayscale PNG images. This dataset would greatly support future
research, enabling much more accurate evaluations of each proposed method.

A metric introduced specifically to measure the accuracy of frequency estimation is the Mean Absolute Percentage
Error (MAPE). This choice is motivated by the practical significance of frequency estimation errors in subsequent
fingerprint processing steps:

1 1 T .
fi,j - ]:—,7‘]:)1‘ .S'L)]

>ij S

where F represents the estimated frequency map, F denotes the ground truth frequency map, and S is the ground truth
segmentation mask (.5; ; is one for foreground pixels, zero otherwise).

2

MAPE(F,F,S) = (30)

2.5 Filtering

After segmentation, orientation estimation, and frequency estimation, filtering is the final step that refines the fingerprint
image before further processing. In this section, we discuss two widely used filtering techniques: traditional Gabor
filtering used in Hong et al. and GBFEN (Gabor-Based Fingerprint ENhancement) by Raffaele Cappelli. While
both methods leverage Gabor filters to enhance ridge-valley patterns, GBFEN introduces refinements that improve
adaptability and overall effectiveness, particularly in challenging fingerprint datasets.

2.5.1 Gabor Filtering

The Gabor filter is a powerful tool for fingerprint image enhancement, based on a sinusoidal plane wave modulated by a
Gaussian envelope. This filter is particularly effective because of its ability to selectively respond to specific orientations
and frequencies, which is key for preserving ridge structures while reducing noise. The Gabor filter used in this method
is even-symmetric, and its real part is defined as a cosine wave modulated by a Gaussian function.

The even-symmetric Gabor filter in the spatial domain is defined as:

G(x;y; 2 | exp + cos(2mjfx
) y? ) 2 :% Z
where T, = TCOoS L +vy sin 12 and Yp = —X sin [+ Yy cos [ are the rotated coordinates in the filter’s local coordinate

frame, and 1 is the orientation of the Gabor filter, and f is the frequency of the cosine wave. o, and o, are the standard
deviations of the Gaussian envelope along the = and y axes, respectively.

The Gabor filter is applied by convolving the fingerprint image with the filter. For each pixel (4, j) in the image, the
corresponding orientation value O(4, j) and ridge frequency value F'(i, j) are used to calculate the filter response. The
enhancement of the image F(4, j) at each pixel is given by:

Wy /2 wy /2

EGj)= >, >, Guuv;0(,j),F(i,j)N(i-mu,j-v) (32)

U=—wg [2v=—w, /2

where O(i, j) and F'(i, j) are the orientation and ridge frequency images, respectively, N is the normalized fingerprint
image, and w, and w,, are the width and height of the Gabor filter mask.

The bandwidth of the filter, which specifies the range of frequencies it responds to, is determined by the standard
deviation parameters o, and o,. In the original algorithm by Hong et al., these values were empirically set to fixed
values of o, = 4.0 and o, = 4.0. However, this approach assumes a constant bandwidth, which can lead to suboptimal
performance when ridge frequency varies significantly across the image.

To address this, Kovesi adapts the values of o, and o, according to the local ridge frequency F'(4, j), as follows:

where £, and k, are constant scaling factors, making the filter more adaptable to varying ridge frequencies across the
image.

11
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In the original method of Hong et al., the width and height of the filter mask were fixed at 11 pixels. However, this
static size may not accommodate Gabor waveforms of different bandwidths. To allow the filter size to vary with the
bandwidth, Kovesi define the filter mask size as a function of ¢, and oy:

w, = 6o, wy = 6oy (34)

This ensures that the filter size is large enough to capture the majority of the Gabor waveform information, which is
typically contained within the region [—30, 30] (three sigma rule).

By adjusting the filter parameters based on the local ridge frequency, this method offers a more adaptable and effective
approach for fingerprint image enhancement, particularly in images where ridge frequencies are not uniform.

0.8

0.6

o

-0.2

-0.4

-0.6

Figure 6: Plot of Gabor filter with k, = 0.85, k,, = 0.85 and a frequency of 0.1

2.5.2 Gabor-Based Fingerprint Enhancement (GBFEN)

GBFEN is a simple and effective fingerprint enhancement method developed by Raffaele Cappelli. It is based on
traditional contextual convolution using Gabor filters. The method has been shown to outperform several state-of-the-art
techniques, particularly when combined with SNFOE (Single-Scale Normalized Fingerprint Orientation Estimation)
and SNFFE (Single-Scale Normalized Fingerprint Frequency Estimation). In fact, GBFEN surpasses the performance
of existing methods on the challenging NIST SD27 latent fingerprint database [[10].

Although the paper that describes GBFEN in detail is not yet available, its effectiveness is highlighted in several
comparative studies. The method is particularly valued for its simplicity and the ability to adapt the Gabor filter
parameters for improved ridge and valley detection, making it an excellent choice for practical fingerprint enhancement
tasks.

Given an input image I (z, y), the enhancement function can be expressed as:

I'(z,y) = I(z,y) * Gox(z,y) (35)

where Gy »(x,y) represents the Gabor filter with orientation # and ridge period A, and * denotes the convolution
operation. The values of # and \ are determined from the orientation and frequency fields of the fingerprint image.

A crucial aspect of GBFEN is the discretization of the ridge period and orientation into a set of representative values.
This allows for efficient selection of the most appropriate filter without performing continuous parameter adaptation.
The discretization functions can be defined as:
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A¢ = round < — )\n)l\in_ (Ny — 1)) (36)
0

6, = round (Ng) mod Ny 37
e

where V), and Ny are the total number of discrete values for ridge period and orientation, respectively. The enhancement
is then performed by applying the precomputed filter indexed by (64, A4) to the corresponding region of the image.

This method ensures that ridge structures are effectively enhanced while noise is suppressed. However, the performance
of GBFEN strongly depends on the accuracy of the orientation and frequency estimation. Errors in these steps can lead
to distortions in the enhanced image, necessitating additional post-processing techniques for refinement.

For further information regarding SNFOE and SNFFE, please refer to the references [4]] and [5]].

Filter Bank Construction: Differences between Kovesi and GBFEN

While both Kovesi’s and GBFEN’s methods rely on Gabor filtering, they differ in how the filters are generated and
applied. The main differences lie in the estimation of ridge frequency, the selection of the appropriate filter, and the
overall construction of the filter bank.

Definition of o, and o,

A key difference between the two approaches is how the parameters o, and o, which control the Gaussian envelope of
the filter, are defined:

* Kovesi’s Method: The filter bank is constructed based on a global ridge frequency estimate, denoted as fyiobal-
The values of o, and o, are computed as:
k. ky

f g, =
f global ’ Y f global

(38)

O

where k. and k, are fixed scaling parameters. This implies that the filter bank is designed for a single frequency,
without adapting to local variations in ridge frequency.

* GBFEN Method: In contrast, GBFEN uses a local ridge frequency estimate f (i, j), computed for each region
of the fingerprint image. The o parameters are then adapted accordingly:

5p
= — 39
o=15 (39)
where p represents the local ridge period. This allows the filter to better adapt to spatial variations in ridge

frequency.

Filter Selection

Another fundamental difference lies in how the appropriate filter is selected for each region of the image:

* Kovesi’s Method: The filter bank consists of a set of Gabor filters that are dynamically rotated to match the
estimated ridge orientation at each pixel. The orientations are continuous, meaning that each filter is generated
on-the-fly at the exact estimated orientation O(%, j).

* GBFEN Method: Instead of dynamically rotating filters, GBFEN precomputes a set of filters and selects the
closest one based on a discretized orientation index 6, and a discretized frequency index \;. This approach
reduces computational complexity at the cost of a small approximation error due to discretization.
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3 Feature Extraction

After presenting the various enhancement techniques, which are essential preprocessing steps when dealing with
degraded images—caused, for instance, by sensor noise, sweat during scanning, or particularly challenging fingerprints
such as those of manual laborers—the next step is the extraction of minutiae. However, before performing this step, it is
crucial to obtain a skeletonized or thinned image from a binarized fingerprint.

3.1 Image Binarization

To enable skeletonization, the image must first be binarized. At this stage, the grayscale fingerprint image (with 256
levels of intensity) is converted into a binary image, where black pixels represent the ridges, and white pixels represent
the valleys. Various binarization techniques exist; however, we opted for a simple and effective thresholding method.

Each pixel P(z,y) is compared to a predefined threshold M. If the pixel intensity exceeds the threshold, it is set to
black (value 1); otherwise, it is set to white (value 0):

1, ifP(z,y)> M
Pb’in(xvy) = { ( y)

4
0, otherwise (40)

3.2 Skeletonization of the Image

To facilitate minutiae extraction, the image must be skeletonized. This process involves applying a sequence of
morphological erosion operations to reduce the ridge thickness until it is a single pixel wide while maintaining ridge
connectivity and the object’s overall topology. That is, the continuity of the ridges must be preserved, and no artificial
gaps should be introduced.

In our recognition system, we used the skeletonization implementation from sklearn, which is based on the Zhang-
Suen thinning algorithm [[11]], wrapped in a function that also removes small objects using|sklearn.morphology. This
algorithm is widely used in fingerprint processing and is known for its reduced computational complexity compared to
other thinning algorithms.

SN
S O

SN
NN
AN \\ \\

b

Figure 7: Example of Cappelli’s enhancing pipeline until the skeletonize process.

3.3 Minutiae Detection

For minutiae extraction, we adopted the widely used Crossing Number (CN) method [12]. This approach is popular due
to its simplicity and effectiveness. It uses a skeletonized fingerprint image is which is then processed, where white
pixels (0) represent the background and black pixels (1) depict the ridges, by analyzing the local neighborhood of
each ridge pixel using an 8-neighbor connectivity within a 3 x 3 window. The CN value for a given ridge pixel P is
computed as:

Pl | P2 | P3 8
CN(P _1 P;—P
I ( )—ZZI| i~ Piil
i=
P7| P6 | P5 With: P8 =P0 P €{0,1}

where P = P, ensures a circular index.

Based on the CN value, the classification of minutiae is as follows:
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* CN(P) = 0: Isolated pixel, generally ignored as it is rare and often results from noise.
* C'N(P) = 1: Termination candidate.

* CN(P) = 2: Normal ridge pixel, not a minutia.

* CN(P) = 3: Bifurcation candidate.

* CN(P) = 4: Quadruple bifurcation, rare and likely due to noise.

This methodology provides an efficient and accurate extraction of minutiae however, inherent image noise, imperfections
in the skeletonization process and poor quality fingerprints, can lead to the detection of minutiae that do not correspond
to true ridge discontinuities. These false minutiae, if not removed, can adversely affect matching performance. To
tackle this issue, we have implemented an approach to remove them.

3.4 Remove False Minutiae

In order to remove these potential damaging elements, we use two approaches: Distance-based fuzzy filtering and
Edge-based filtering.

The distance-based approach computes the Euclidean distances between all pairs of detected minutiae. By applying
a distance threshold, the algorithm identifies minutiae that are too close together, situations that often indicate false
positives caused by noise or artifacts from the skeletonization process. Fuzzy rules based on the type of minutiae (e.g.,
ridge ending vs. bifurcation) are then applied. For instance, if an "ending" and a "bifurcation” minutia are very close,
one of them may be removed as they likely represent a single true feature rather than two separate ones. Similarly, if
two minutiae of the same type (either both endings or both bifurcations) are too close, they are both flagged for removal.
This fuzzy logic approach helps in reducing clusters of spurious minutiae while preserving genuine ones.

The edge-based approach on the other hand addresses the issue of false minutiae that occur near the boundaries of the
fingerprint image. It operates by examining the immediate neighborhood of each minutia in the four cardinal directions
(east, west, north, and south). If a minutia does not have the expected surrounding valley pixels in these directions, it is
likely an artifact produced by edge effects or noise, and therefore it is filtered out.

Detected Minutiae Filtered Minutiae

Figure 8: Example of pre and post filtering of false minutiae

4 Minutiae Matching Algorithm

For the matching process, we choose a simple global-structure-based algorithm. Despite the availability of more robust
matching strategies, we adhere to the KISS principle in designing our fingerprint recognition system. Even though it is
a straightforward method, it is crucial to make it robust; otherwise, impostors could gain access to the system. At the
same time, it should not be overly restrictive, to avoid rejecting genuine users.

As we will see in Section[6} the overall performance, particularly when using the Cappelli enhancement pipeline, is
quite satisfactory, even under challenging conditions such as massive impostor attempts and highly adversarial datasets
like the FVC datasets. Many fingerprints exhibit structural distortions due to the pressure applied on the sensor, while
others are partial impressions that were cut off at the edges of the sensor.

15



Fingerprint enhancement

Minutiae Matching (Score: 0.853)

50 4
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Figure 9: Example of minutiae matching from 101_1.tif and 101_2.tif images from FVC 2002 DB1 B

The implemented minutiae matching algorithm adopts a transformation-invariant approach by aligning two sets of
minutiae through translation and rotation correction, ensuring robust matching under different acquisition conditions.
This approach is inspired by existing literature, such as [[13]], which introduces coordinate system-based matching
techniques.

4.1 Algorithm Overview

The process begins by iteratively selecting each minutia from both fingerprint templates as a reference. Once a reference
minutia is chosen, the coordinate system of the corresponding minutiae set is transformed so that the selected reference
minutia is positioned at the origin with its orientation aligned to zer(ﬂ This step guarantees translation invariance.

To account for rotational variations, the first minutiae set is systematically rotated within a predefined range (e.g.,
from —5° to 5° in 0.5° increments). For each rotation step, minutiae pairs from both sets are compared based on
spatial proximity and orientation similarity. A minutia pair is considered a match if the Euclidean distance d between
them is below a predefined threshold d,,,x and their orientation difference 6 does not exceed y,,x. The transformation
(i.e., reference minutia and rotation angle) that yields the highest number of matched pairs is selected as the optimal
alignment.

4.2 Similarity Score Computation
To quantify the similarity between two minutiae sets, we compute a similarity score S, defined as:

M2
NNy

S = 41)

where M represents the number of matched minutiae pairs, while /N7 and N, denote the total minutiae count in the two
sets. This formulation ensures that the score remains invariant to the size of the fingerprint templates and emphasizes
the proportion of matched minutiae.

4.3 Key Parameters
The accuracy and robustness of the matching process depend on several key parameters:

e Maximum Distance (dpy,x): The maximum Euclidean distance allowed between two minutiae for them to be
considered a match. A larger value increases tolerance to minor distortions but may lead to false matches.

¢ Maximum Angular Difference (6,ax): The maximum allowable orientation difference between two minutiae.
This parameter controls sensitivity to rotational variations and should be tuned according to the acquisition
conditions.

“The orientation of a minutia is estimated using the orientation map of the fingerprint image.
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* Rotation Range and Step: The extent and granularity of the rotation applied to one minutiae set. A finer step
size improves precision but increases computational complexity.

By carefully tuning these parameters, the algorithm achieves a balance between accuracy and efficiency, making it
suitable for fingerprint recognition tasks in both biometric identification and verification.

S Singular Points in Fingerprints

Singular points are distinctive locations in a fingerprint where the ridge orientation exhibits discontinuities. The three
primary types of singular points are the loop, the delta, and the whorl. The loop is typically the uppermost point of the
innermost ridge, while the delta is the location where three ridge flows converge, forming a triangular pattern. A whorl,
on the other hand, is a circular or spiral pattern that often contains two loops.

To detect singular points, the Poincaré Index method [12]] is widely used. This method computes the sum of orientation
changes along a closed path surrounding a given pixel in the orientation field. If the computed index is approximately
+ (or +% in a normalized form), the point is classified as a loop. If the index is around —m (or — %), the point is a delta.
A value near +27 suggests the presence of a whorl, but for the most orientation maps these singularities are chosen
as two loops near each other. This simplification is due to the difficulty of obtaining a precise orientation estimate in
regions with complex circular structures. A value close to zero indicates a non-singular region.

Mathematically, for a discrete orientation map, the Poincaré Index at a point (z, y) is computed by summing the angular
differences between adjacent pixels along an 8-connected neighborhood. The formula is:

1 N-1
Pl(z,y) = - Z; Ab; (42)
where Af; is the angle difference between successive orientation values along the closed path.

The accuracy of singular point detection depends on the quality of the orientation field and preprocessing techniques
like Gaussian smoothing. Moreover, thresholding is applied to ensure robustness against noise in real-world fingerprint
images. Since whorls often consist of multiple loops, their detection requires analyzing regions with multiple high-
magnitude Poincaré Index values.
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Figure 10: Examples of Poincaré index computation in the 8-neighborhood of points belonging (from left to right) to a
whorl, loop, and delta singularity, respectively.

5.1 Role of Singularities in Matching

Singular points can act as discriminative features in our fingerprint matching process. If two fingerprints exhibit
different singularities, they may be considered non-comparable. However, this approach assumes high reliability in
singularity detection, which depends on the accuracy of the orientation field estimation during the enhancement phase.
Additionally, we must ensure that the fingerprint is not cropped by the sensor edges, as this could lead to missing or
misidentified singular points, compromising the matching process.

To enhance robustness, an alternative approach is introduced a gain mechanisms. Instead of discarding comparisons
between fingerprints with different singularities, a gain factor is applied to the matching score if during the global
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minutiae structure matching, singularities match. This method reduces the risk of false acceptances caused by only
minutea matching analysis.

Orientation Field (Color Map) Singularities Image

Orientation (radians)

Figure 11: Example of singularity extraction output. The left image represents the orientation map computed using
GBFOE, where the peaks (visible as spiral-like patterns) correspond to the singularities. The right image shows the
output of the Poincaré Index method, where the red triangle represents the delta and the blue circle denotes the loop.

6 Evaluation

The objective of this project was to compare various fingerprint datasets and enhancement approaches in order
evaluate our system’s performance. For a comprehensive assessment, we computed several evaluation metrics,
including the decidability factor on processed fingerprints, SRR (System response reliability), ROC (Receiver Operating
Characteristic) and direct comparisons of the EER (Equal Error Rate) under different gallery and impostor ratios.
Additionally, we collected detection rank data for closed-set identification scenarios. In particular we will set up
comparisons between different FVC2002 datasets which deploy different sensors for fingerprint capture. We decided to
use:

* DB1: optical sensor "TouchView II" by Identix

* DB2: optical sensor "FX2000" by Biometrika

* DB3: capacitive sensor "100 SC" by Precise Biometrics

* DB4: synthetic fingerprint generation

* Neurotechnology CrossMatch: optical sensor "Verifier 300" by Cross Match Technologies
6.1 Decidability
Decidability is a measure of the ability of a biometric system to distinguish between samples belonging to the same
identity (intra-class) and samples belonging to different identities (inter-class). In our study, decidability is computed as

the absolute difference between the average intra-class similarity and the average inter-class similarity, normalized by
the spread of the similarity distributions. Mathematically, it is defined as:
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where:

|§intra - ginter ‘

decidability =

2 2
\/05 * Ointra + Ointer

Sintrq 1S the average intra-class similarity score
Sinter 18 the average inter-class similarity score
Ointra 18 the standard deviation for the intra-class similarities

Ointer 18 the standard deviation for the inter-class similarities

(43)

To compute these statistics, we first generate a complete ALL-against-ALL score matrix for our dataset by comparing
every template with every other template. This comprehensive matrix allows us to derive robust estimates of both the
central tendency and the dispersion of intra-class and inter-class similarity scores.

This formula normalizes the difference between the mean intra-class and inter-class similarities by a factor that accounts
for the spread (variance) of these scores.

Dataset Avg Decidability  Avg Intra-class  Avg Inter-class  Avg std dev Intra-class  Avg std dev Inter-class
FVC DB1 4210 0.662 0.289 0.110 0.055
FVC DB2 6.018 0.702 0.267 0.089 0.043
FVC DB3 3.445 0.640 0.349 0.089 0.058
FVC DB4 3.468 0.640 0.321 0.111 0.057
NC 9.114 0.833 0.297 0.048 0.048
Overall 5.251 0.695 0.304 0.089 0.052
Table 1: Average Decidability and Class Similarity Metrics - Raffaele Cappelli enhancement
Dataset Avg Decidability ~ Avg Intra-class  Avg Inter-class  Avg std dev Intra-class  Avg std dev Inter-class
FVC DB1 3.403 0.598 0.290 0.118 0.051
FVC DB2 4316 0.587 0.256 0.097 0.039
FVC DB3 2.680 0.583 0.350 0.097 0.053
FVC DB4 3.370 0.597 0.305 0.105 0.051
NC 7.875 0.775 0.298 0.055 0.046
Overall 4.328 0.628 0.299 0.094 0.048

Table 2: Average Decidability and Class Similarity Metrics - Peter Kovesi enhancement

These tables consolidate five key parameters that characterize the overall decidability of the biometric system. We
decided to track the average decidability, the average intra-class similarity, the average inter-class similarity, the average
standard deviation of the intra-class similarities and lastly the average standard deviation of inter-class similarities.
Notably, using Raffaele Cappelli’s enhancement process, the Neurotechnology CrossMatch (NC) dataset exhibits the
highest decidability, while FVC2002 Dataset 3 shows the lowest decidability. This trend is consistent regardless of the
enhancement pipeline applied.
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6.2 SRR (System response reliability)

In order to gain an insight on the actual correctness of the system’s decision on whether a corresponding fingerprint
is found, we compute the System Response Reliability. The System Response Reliability (SRR) is an index that
measures the reliability of a single response from an identification biometric system, specifically its ability to distinguish
between genuine subjects and impostors for a given probe. Unlike overall system performance metrics as ROC, which
is calculated over a set of trials and across different thresholds, SRR aims to provide a measure of confidence in the
outcome of a single identification attempt.

The core concept of SRR is that it assesses the degree of "confusion" among potential matches for a given probe during
identification. The underlying idea is that if the top-ranked match is significantly different from other candidates in the
gallery, the system’s response is considered more reliable. Conversely, if several gallery members have similar scores to
the top match, the response is deemed less reliable due to potential ambiguity.

In our system, the System Response Rate (SRR) is computed from a reliability measure, denoted as the ¢, score, which
represents the relative gap between the highest and second-highest similarity scores for a given sample. Specifically, the
¢1 score is calculated as:

by = (1 — second_best_similarity) — (1 — best_similarity) 44)

(1 — worst_similarity)

assuming the best similarity is nonzero. This formulation captures how distinctly the best match stands out relative to
the next candidate. The SRR is then derived by comparing each ¢; score to an optimal threshold (T) that is determined
based on the trade-off between genuine and impostor identification errors. The SRR is computed as:

¢17T, forp, >T
SRR=4 "7
=+, forg;<=T

This two-branch normalization ensures that:

* A positive SRR indicates that the ¢; score exceeds the threshold, suggesting a reliable, genuine match.
* A ¢ score that falls below the threshold will be set to 0, signaling potential impostor identification.

In essence, SRR provides a normalized measure of the system’s confidence in its identification decision. It reflects the
margin by which a sample’s reliability measure surpasses or falls short of the optimal decision boundary. This makes
the SRR a valuable metric for comparing performance across different system configurations or datasets in biometric
identification contexts.
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6.2.1 SRR for FVC2002 Dataset 1 - Raffaele Cappelli Enhancement

6.2.2 SRR for FVC2002 Dataset 2 - Raffaele Cappelli Enhancement
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6.2.3 SRR for FVC2002 Dataset 3 - Raffaele Cappelli Enhancement
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6.2.4 SRR for FVC2002 Dataset 4 - Raffaele Cappelli Enhancement
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6.2.5 SRR for Neurotechnology CrossMatch Dataset - Raffaele Cappelli Enhancement
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6.2.6 SRR for FVC2002 Dataset 1 - Peter Kovesi Enhancement
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6.2.7 SRR for FVC2002 Dataset 2 - Peter Kovesi Enhancement
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6.2.8 SRR for FVC2002 Dataset 3 - Peter Kovesi Enhancement
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6.2.9 SRR for FVC2002 Dataset 4 - Peter Kovesi Enhancement
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6.2.10 SRR for Neurotechnology Crossmatch - Peter Kovesi Enhancement
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Dataset Average SRR loss

FVC DBI 0.11
FVC DB2 0.14
FVC DB3 0.08
FVC DB4 0.10
NC 0.09
Overall 0.10

Table 3: Average SRR loss metrics - Raffaele Cappelli enhancement

Dataset Average SRR loss

FVC DB1 0.11
FVC DB2 0.10
FVC DB3 0.07
FVC DB4 0.09
NC 0.08
Overall 0.09

Table 4: Average SRR loss metrics - Peter Kovesi enhancement

From these graphs we can see how different gallery and impostor ratios go and impact the overall performance of the
system and we can line out a common trend present across all datasets and present on both enhancement processes. We
notice that as the gallery ratio is changed along with the impostor ratio, the SRR steadily decreases. This phenomenon
is due to the fact that as the gallery set increases, the number of templates of each genuine identity increases. As the
impostor ratio increases, more overall identities are included in the impostor set. This leads to a greater chance for an
impostor to potentially match with one of the gallery templates, which leads to an overall lower SSR. The idea behind
the SRR is that the higher it is, the greater amount of genuine users it was able to identify.

From these graphs, we observe that varying the gallery and impostor ratios significantly affects the overall performance
of the system, with a clear trend evident across all datasets and both enhancement processes. Specifically, as the gallery
ratio increases and the impostor ratio becomes higher, the System Response Rate (SRR) steadily decreases.

This trend can be explained by the fact that a higher gallery ratio results in a larger number of templates for each
genuine identity. While this provides more data for matching, it also increases the likelihood of slight variations
between different genuine samples, potentially reducing the discriminative margin between the true match and other
close matches. Moreover as more identities are added to the impostor set, the probability that an impostor template
closely resembles one of the gallery templates increases. This raises the chance of false matches, thereby lowering the
SRR.

The SRR is designed to quantify the system’s identification confidence. A higher SRR indicates that the system has
a larger margin by which genuine users are correctly identified relative to impostors. Thus, a decreasing SRR with
increasing gallery and impostor ratios suggests that the system’s ability to distinguish genuine matches from impostor
matches diminishes when the number of potential mismatches increases.

In summary, these results highlight the importance of carefully selecting the gallery and impostor ratios to optimize the
balance between identification accuracy and the system’s overall robustness against false matches.
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6.3 ROC (Receiver Operating Characteristic)

The Receiver Operating Characteristic (ROC) curve is a fundamental tool used to evaluate the performance of biometric
systems, particularly in verification mode. It graphically illustrates the trade-off between the False Accept Rate (FAR)
and the Genuine Accept Rate (GAR), which is equivalent to 1 minus the False Rejection Rate (FRR), as the system’s
decision threshold is varied.

Furthermore ROC curves are used to report on the detection performance for verification tasks and to summarize the
performance of a biometric system at different operating points. They show how well a biometric system can detect a
genuine user while avoiding the acceptance of impostors.

To assess the overall performance, we pooled all the ¢; scores (used to compute the System Response Rate, SRR)
across various gallery and impostor ratio configurations and plotted an aggregated ROC curve for each dataset. The
Area Under the Curve (AUC) was then computed as a summary metric, with higher AUC values indicating better
discriminative performance.

Dataset Avg AUC across all curves
FVCDBI1 0.994
FVC DB2 0.991
FVC DB3 0.964
FVC DB4 0.978
NC 1.000
Overall 0.985

Table 5: Average ROC Metrics - Raffaele Cappelli enhancement

Dataset Avg AUC across all curves
FVC DB1 0.983
FVC DB2 0.979
FVC DB3 0.951
FVC DB4 0.951
NC 1.000
Overall 0.972

Table 6: Average ROC Metrics - Peter Kovesi enhancement

From these tables, we can determine the overall ROC performance across all datasets and observe the impact of
different enhancement pipelines on the system’s performance. Notably, the Neurotechnology CrossMatch (NC) dataset
achieved the highest AUC values under both enhancement processes, indicating excellent discriminative ability, whereas
FVC2002 Dataset 3 consistently demonstrated the lowest overall performance.

This study tells us that as the gallery and impostor ratios vary, the system’s performance, measured by the ROC and
AUC, is impacted. The observed trends are consistent across different datasets and enhancement pipelines.
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6.4 EER comparisions

EER is the operating point where the False Accept Rate (FAR) equals the False Rejection Rate (FRR) and serves
as a useful metric for system performance where the lower the EER, the better the discriminative capability of the
biometric system. By varying the gallery and impostor ratios, we can examine how changes in enrollment size and
impostor population affect the system’s performance. This analysis provides critical insights into the trade-offs inherent
in biometric recognition systems and aids in optimizing their overall configuration.

To assess the overall performance of our system across various scenarios, we compute Equal Error Rate (EER)
comparisons based on different gallery and impostor ratios. The gallery ratio defines the proportion of probe samples
from our datasets that are included in the gallery, while the impostor ratio specifies the percentage of identities used as
impostors. In our study, we evaluate a range of scenarios by employing gallery ratios from 30% to 70% and impostor
ratios from 20% to 50%.

Moreover the comparisons of the EER values have been done by directly comparing the EER values obtained in
verification mode and in identification open set.

In verification mode, the user initially performs an identity claim. The biometric system will then perform a one-to-one
comparison between the probe template and a stored template or stored templates of the claim identity. The system then
computes a similarity score and makes a decision on whether to accept or reject that user. It will be able to make this
decision by checking whether the similarity score is above or below a certain threshold.

In contrast, in an identification open-set scenario, the user does not perform an identity claim and it is up to the system
to perform a one-to-many search against all gallery templates. In this phase the system needs to identify the most likely
match for the user’s identity and at the same time decide on whether the input sample belongs to any of the enrolled
identities.

6.4.1 EERs for FVC2002 Dataset 1 - Raffaele Cappelli Enhancement
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6.4.2 EERs for FVC2002 Dataset 2 - Raffaele Cappelli Enhancement
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6.4.3 EERs for FVC2002 Dataset 3 - Raffaele Cappelli Enhancement
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6.4.4 EERs for FVC2002 Dataset 4 - Raffaele Cappelli Enhancement
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6.4.5 EERs for FVC2002 Dataset 1 - Peter Kovesi Enhancement
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6.4.6 EERs for FVC2002 Dataset 2 - Peter Kovesi Enhancement
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6.4.8 EERs for FVC2002 Dataset 4 - Peter Kovesi Enhancement
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Dataset Avg EER for Verification Avg EER for Identification (open-set)

FVC DBl 0.018 0.017
FVC DB2 0.033 0.034
FVC DB3 0.075 0.076
FVC DB4 0.041 0.040
NC 0 0

Overall 0.033 0.033

Table 7: Average EER Metrics - Raffaele Cappelli enhancement

Dataset Avg EER for Verification Avg EER for Identification (open-set)

FVC DBI 0.032 0.033
FVC DB2 0.032 0.033
FVC DB3 0.109 0.111
FVC DB4 0.100 0.099
NC 0 0

Overall 0.054 0.055

Table 8: Average EER Metrics - Peter Kovesi enhancement
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7 Ranks for Identification in closed set

In a closed-set identification scenario, it is assumed that the probe identity is guaranteed to be present within the gallery.
Consequently, the system operates without the need for impostor comparisons or threshold determination. Instead, upon

presentation of a probe, the system generates a ranked list of potential identities.

Given that each identity in the gallery is represented by multiple instances, the ranking process leverages the concept of
optimal intra-class comparisons. Specifically, for each gallery subject, the system identifies the highest similarity score
achieved between the probe and any of the subject’s gallery instances. The ranked list is then constructed based on
these maximum intra-class similarity scores.

This approach ensures that the ranking reflects the best possible match for each gallery identity, thereby maximizing the

likelihood of accurate identification within the closed set.

7.0.1 Ranks for FVC2002 Dataset 1 - Raffaele Cappelli Enhancement
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7.0.2 Ranks for FVC2002 Dataset 2 - Raffaele Cappelli Enhancement

Gallery Ratio 0.3

Gallery Ratio 0.4

o
e 1001 g7e%
80 80
_ e _ e
£ £
g £
o o
20 20
1% 0% 0a% 02% 03% 0% oaw 1% 0% 0% o4 0% 01 ove o ox o 1%
T 2 3 i s 3 7 s B 10 T 2 3 4 s 3 7 s B 10
Rank Rank
Gallery Ratio 0.5 Gallery Ratio 0.7
12001 98.2% 100
80 80
) 5
g g
2 2
o o
20 20
o7 02% 02% 01% 01% 0% o 01% 0% os% 1% o1 o1% o1 o1% 026 o 0o
1 2 3 7 s ¢ 7 g B 0 T 2 3 7 s ‘ 7 s g 0
Rank Fank
7.0.3 Ranks for FVC2002 D. 3 - Raffaele C 1li Enh
Y. anks ior ataset 3 - Raffaele appell kn ancement
Gallery Ratio 0.3 Gallery Ratio 0.4
1001 g 50 100{ 7.0
L 80
0 5
2 2
o o
0 20
13% o7 04% 02% 03% 01% o1 01% 03% 0% 04% 03% 01% 01% o2 02%  oxs 01%
b 2 B q s ¢ 7 s s 10 T 2 3 4 s c 7 s s 10
Rank Rark
Gallery Ratio 0.5 Gallery Ratio 0.7
10 o82% 100 %
80 80
) -
g g ®
£ £
g 4
& 2
“ o
20 20
o7% 02% 02% 013 0% ox o 01% 0% os% 01% 01% o1 016 o1 o2 o 0ot
1 2 B 7 s ¢ 7 O g 0 1 Z 3 7 s ‘ 7 O g 0
Rank Fank

34




Fingerprint enhancement

7.0.4 Ranks for FVC2002 Dataset 4 - Raffaele Cappelli Enhancement
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7.0.6 Ranks for FVC2002 Dataset 1 - Peter Kovesi Enhancement
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7.0.8 Ranks for FVC2002 Dataset 3 - Peter Kovesi Enhancement

Gallery Ratio 0.3

Gallery Ratio 0.4

100
2.3% 955%
80
80
60
0
E 2
2 £
© w0
20 0
31%
% 25%
B o om om  om o o W 1% om om0 ome o ome oo
b 2 3 4 s ¢ 7 s B 10 1 2 3 b s 3 7 s B 10
Rank Rank
Gallery Ratio 0.5 Gallery Ratio 0.7
100 { a7.7% 100
80 0
) 5
H g
2 2
W o
20 20
. 1 osw o oww  owe ook oon  oo% oo L% am  ow%  oow  oo%  oow  oow  oon  oow
T 2 3 7 s ¢ 7 g B 10 T 2 3 7 s ¢ 7 g g 0
Rank Fank
7.0.9 Ranks for FVC2002 D. 4-P Ki i Enh
V. anks 1or ataset 4 - Peter Kovesi Enhancement
Gallery Ratio 0.3 Gallery Ratio 0.4
4.2% 1007 0
80
0
&0 o
g 2
H 2
© o
20 0
38% e
X B % os% o oow  o1% o ome  oow B 0% oz oi%  oow  oow oo oow  oow
b 2 3 q s c 7 s s 10 1 2 3 4 s © 7 s B )
Rank Fank
Gallery Ratio 0.5 Gallery Ratio 0.7
100§ g7 00 LR E——
80 80
) _ e
£ £
H H
g g
2 2
o w0
20 20
23% L%
n 04% 0% 0% 00% 00% oo 00% 00% ) 03% 0% 00% 00% 00% 00% oo 00%
T 2 3 T s ¢ 7 g g 10 T 2 3 g E c 7 O g 10
Rank Fank

37




Fingerprint enhancement

7.0.10 Ranks for Neurotechnology CrossMatch - Peter Kovesi Enhancement
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8 Conclusion

The results obtained in this study are encouraging, especially considering that no fine-tuning was applied. This is due to
the presence of predefined parameters, as seen in Kovesi’s method, and the meticulous fine-tuning process conducted by
Cappelli. However, it should be noted that some enhancement steps did not make use of the FVC 2002 dataset (nor
NeuroTechnology).

While the performance achieved does not reach levels seen in international competitions, this is largely due to the
limited robustness of the matching algorithm. More advanced approaches, such as those that transition from a local
matching strategy based on triples to a global matching method [14], or cylinder-based method [3]], could yield improved
results. Nevertheless, the primary objective of this paper was to demonstrate how specific enhancements, such as those
introduced in GMFS compared to Kovesi’s method, or the consideration of individual ridge frequencies instead of a
global frequency, can impact performance.

A noteworthy aspect is the strong performance of NeuroTechnology. This can be attributed to the nature of the dataset,
which was collected under non-adversarial conditions, without excessive distortions or fingerprint cuts. Additionally,
while the full dataset contains approximately 500 samples, only 80 were selected for analysis to ensure a reasonable
comparison. This choice was also motivated by the computational demands of the matching process, which is not
optimized for handling large-scale operations.

Future work will focus on adopting alternative matching strategies, such as those discussed in the referenced document,
and further exploring Cappelli’s CNN-based enhancement techniques to refine fingerprint processing steps.
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