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Abstract—Cache-based Website Fingerprinting (WF) is a powerful side-channel attack that bypasses traditional network-level
defences. However, its effectiveness is limited by its high dependency on the target’s specific hardware and software environment. This
paper demonstrates that this limitation can be overcome by creating an adaptive attacker that first performs passive device
fingerprinting to select a pre-trained model tailored to the victim’'s system. Through a study across multiple CPUs, browsers, and
operating systems, we show that while a naive, generic model achieves a low baseline accuracy of at most 49.5%, our proposed
adaptive attacker achieves accuracies often exceeding 70% and reaching as high as 96% in some configurations. This work proves
that environmental parameters are a key component of a practical cache-based WF attack and highlights the need to consider these
adaptive threats when designing future browser and hardware defences.

Index Terms—Website Fingerprinting, Side-Channel Attacks, Cache Occupancy, Device Fingerprinting, Machine Learning.

1 INTRODUCTION

In recent years, protecting user data privacy has become a
significant challenge. One of the more subtle battlegrounds
for this is the modern web browser, where a malicious
user can take advantage of vulnerabilities present in
features like installed browser extensions, interactions on
the website and predictable network traffic to infer certain
user characteristics and behaviours. This information can
then be used for malicious intent or can be potentially sold
to advertisers in order to send more tailored advertisements
to users. This has been an issue in the past because of
cookie-based tracking on websites, however due to privacy
concerns the tracking now occurs in a more subtle and
covert way.

A prominent example of this is Website Fingerprinting
[9] [12], a side-channel attack where an adversary identifies
the websites a wuser visits, even over an encrypted
connection. The classic approach attackers use to deploy
this kind of attack is by analysing network traffic patterns
of users connecting to websites. The idea behind this attack
is to collect network traces and determine which website
the client visited and this is possible since these might have
some distinctive features that make the digital fingerprint
of that website recognizable. However, these methods are
increasingly challenged by countermeasures like traffic
morphing and traffic splitting [8] [20].

To overcome these defenses, Shusterman et al. [4]
proposed a more resilient attack that shifts the focus from
the network to the local machine. Their method uses a cache
occupancy side-channel, where an attacker-controlled
website monitors the state of the victim computer’s cache,
and uses that information to infer the victim’s web activity
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in other tabs of the same browser or even in other browsers.
This technique is resistant to network-level defences
and can be applicable in scenarios where network-based
fingerprinting is known to be less effective, such as when
the browser itself caches the contents of the website.

While powerful, the work by Shusterman et al. left
a critical question largely unexplored: how much does
the attack’s effectiveness depend on the target’s specific
hardware and software? In this paper we prove that by
first deploying a passive device fingerprinting attack [15],
an attacker can launch a much more successful and precise
website fingerprinting attack. We hypothesize that using
this device information to select a dedicated pre-trained
model will yield significantly higher accuracy than a generic
approach that is trained with a collection of memory traces.

To validate this, we use the JavaScript memorygrammer
from [5] to conduct a closed-world study on five websites,
collecting 200 traces each on modern versions of Google
Chrome and Firefox. We analyse how the operating
system itself may impact the fingerprints by running
experiments on both Windows and Linux systems. We also
investigate the role of browser-specific timer resolutions,
a countermeasure developed in response to attacks like
Spectre [13], and show how an attacker must adapt
their measurement strategy to the target environment.
Ultimately, we propose an adaptive attack model where
a initial device fingerprint is used to select an optimal
classification model, demonstrating a noticeable increase in
attack accuracy. These findings have clear implications for
the practical security of modern web browsers and future
research into side-channel attacks.



2 BACKGROUND
2.1 Website Fingerprinting Attacks

The classic Website Fingerprinting (WF) attack model
assumes an adversary positioned on the network path
between a client and a server. Much previous work has
demonstrated the ability of such an adversary to make
inferences about a user’s browsing activity by performing
statistical analysis on encrypted network traffic [7]. By
studying observable metadata such as the size, direction,
and timing of data packets, an attacker can construct
a recognizable signature, or “fingerprint,” for a specific
website. The effectiveness of these attacks has led to the
development of various countermeasures. The common
strategy behind these defences is to obfuscate traffic
features by injecting random delays or spurious “cover”
traffic, making it more difficult to distinguish one website’s
traffic pattern from another [18].

Previous work focused on collecting a high number
of traces for each website, focusing on building feature-
based machine learning models, however, recent work has
shifted towards more advanced classification techniques
to handle the complexity of modern web traffic. Bhat et
al. [16] proposed using a ResNet-based neural network for
high-accuracy classification with less data. In a different
approach Sirinam et al. [14] utilized N-Shot learning, a
method that compares pairs of traces to classify a new trace
based on its similarity to known, labelled examples.

This paper will use a CNN (Convolutional Neural Net-
works) model. In particular CNNs are excellent at finding
local features or shapes within data. For the memorygrams
of [4], which are visualizations of cache activity, it learns to
spot the specific spikes, dips, and bursts of activity that are
characteristic of a particular website. This model are able to
achieve a high degree of accuracy both in a closed-world
dataset and an open-world dataset of data. The difference
between a closed-world dataset and an open-world dataset,
however, due to limited computing power, our work will
focus on a closed-world setting.

2.2 Cache-Based Side-Channel Attacks

In computing systems, multiple programs running on the
same processor will share hardware components. This
resource sharing, particularly within the micro-architecture,
can create covert information leakage pathways known as
side channels. Such channels can be exploited by malicious
programs to learn secret data from other processes, such
as cryptographic keys, user keystrokes, and the memory
address layout of a victim program [6]. Among the most
well-studied of these are cache-based side-channel attacks,
which leverage contention within the processor’s cache
memory.

Processor caches are designed to mitigate the latency
difference between the high-speed CPU and the slow main
memory (RAM). A cache is a small, fast memory buffer that
stores copies of recently used data from main memory. The
majority of modern processors utilize a set-associative cache
design, in particular Intel. In this architecture, the cache
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is partitioned into numerous sets. Each address in main
memory is mapped to one specific set, meaning its data can
only be stored within that designated partition of the cache.

When the processor requests data from a memory
address, it first checks the cache hierarchy. If the data is
present (a cache hit), it is retrieved quickly. If the data is not
found (a cache miss), the search continues to the next level
of the cache. A miss in the final cache level, known as the
Last Level Cache (LLC), necessitates a much slower access
to the system’s RAM to fetch the data.

The method used in this paper, the Cache Occupancy
Channel, directly exploits this design. An attacker’s script
allocates a large buffer in memory (ideally the size of the
Last-Level Cache, or LLC) and repeatedly measures the time
it takes to access it. When a victim process accesses memory,
it may evict the attacker’s data from the cache. This forces
the attacker’s script to retrieve its data from main memory,
introducing measurable delays. The time taken to access the
buffer is therefore roughly proportional to the number of
cache lines the victim has used [3].

2.3 Browser Mitigations and Device Fingerprinting

The discovery of critical vulnerabilities like Spectre [13], a
side-channel attack that exploits “speculative execution”,
forced browser vendors to implement widespread
mitigations. A primary defence has been the reduction
of timer precision. As modern browsers limit the
resolution of high-precision timers like performance.now(),
the precise timing differences needed for many cache
attacks become harder to measure. For example, modern
versions of Chrome now restrict timer resolution to 100
microseconds, while Firefox has also implemented similar
countermeasures [19] [1].

This paper leverages Device Fingerprinting [15], a tech-
nique that collects information about a device’s hardware
and software configuration via JavaScript APIs. By knowing
which browser and OS the victim is using, an attacker can
infer the timer resolution and other system properties, al-
lowing them to adapt their attack, for example, by switching
from measuring probe time to counting probe frequency, to
achieve a much higher success rate.

3 OVERVIEW OF YOUR PROPOSED APPROACH

This work adopts the cross-tab attack model proposed by
Shusterman et al. [4], in which an adversary uses phishing
techniques or malicious advertising to lure a victim into
opening an attacker-controlled website. This malicious
page contains a JavaScript-based monitor that uses the
cache occupancy channel to collect memorygrams while the
victim browses legitimate websites in other tabs or browser
instances.

While the baseline of the attack is set, our primary
contribution is the introduction of a more sophisticated,
adaptive attack model. We hypothesize that the
effectiveness of a cache-based fingerprinting attack can



be increased if the attacker first performs passive device
fingerprinting to profile the target’s environment. This
initial profiling allows the attacker to tune the parameters
of the attack to the specific hardware and software
configuration of the victim, leading to a more precise and
successful classification.

Our proposed adaptive attack consists of two distinct
phases:

e Phase 1 - Passive Device Fingerprinting: Once
the victim visits the malicious site, a lightweight
JavaScript script collects key information about the
target system. This includes the browser type and
version, operating system, and CPU architecture
(e.g., Intel or AMD), which can often be inferred
from the userAgent string and WebGL rendering
information.

e Phase 2 - Tuned Fingerprinting and Classification:
The information gathered in the first phase is then
used to configure the JavaScript memorygrammer. As
our experiments show, cache management systems
and browser timer resolutions differ across environ-
ments. By knowing the victim’s system architecture
and browser, the attacker can select the optimal
measurement strategy and then use a adapted, pre-
trained classification model that was built using data
from a matching environment.
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Fig. 1. Attack model

4 EVALUATION

To test the hypothesis that an initial device fingerprinting
makes the attack more effective, we conducted a series of
experiments across different micro-architectures, browsers,
and operating systems. This section details our experimental
setup, the machine learning methodology, and the results of
our analysis.

4.1 Experimental Setup

A dataset was collected from five target websites using two
machine configurations: a high-performance laptop with an
Intel® Core™ i7-1260P processor with an 18MB LLC, and
an older desktop computer with an Intel® Core™ i7-7700K
processor and an 8MB LLC. On each machine, we collected
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200 cache traces per website using both Google Chrome
(v. 137) and Firefox (v. 139). This process was performed
on both Windows and Linux operating systems to create a
diverse set of environmental conditions.

The memorygrams were collected over a 30-second period
with a sampling period of 2 ms, resulting in traces of
15,000 samples each. It is important to note that the timer
resolution of modern browsers is coarsened as a security
measure [19] [1].

4.2 Classification Methodology

To perform website fingerprinting on cache occupancy
traces, a deep learning pipeline was used using Python
with the TensorFlow and Keras libraries. It consists of four
stages:

o Data Loading: The script first loads all the collected
.json files, where each file contains a single memory-
gram trace and the name of the website it belongs
to.

e Data Preprocessing: Each trace is normalized so that
the model focuses on the shape of the cache activity.
Website names are also converted into a numerical
format that the model can understand (classes).

e Model Design: We use a Convolutional Neural
Network (CNN), a type of deep learning model that
is excellent at finding patterns in sequence data. The
model is designed to automatically extract the most
important features from the memorygrams.

e Training and Evaluation The dataset is split, with
80% used to train the model and 20% for testing.
Finally, the trained model’s performance is measured
on the test data to get a realistic measure of its
accuracy.

4.3 Attack Scenarios

The core of our evaluation is a comparison between two
attacker models:

o Naive Attacker: This model represents an adversary
who collects cache traces from various sources but
does not perform any preliminary device fingerprint-
ing. To simulate this, we trained a ”generic” CNN
model on a dataset containing a mix of traces from
all our tested environments.

o Adaptive Attacker: This model represents our pro-
posed approach. Here, the adversary first runs a
device fingerprinting script to identify key system
properties like the browser, OS, and CPU vendor.
Based on this profile, the attacker then selects an
adapted, pre-trained model that was built exclu-
sively on data from a matching environment.



TABLE 1
Comparison of Classification Performance for Naive vs. Adaptive Attack Models Across Different Environments

Browser ‘

Naive Attacker Adaptive Attacker

(O] CPU LLC
| Accuracy Recall Fl-Score | Accuracy Recall F1-Score

Windows  i7-1260P  18MB  Chrome v137 48.0% 48.0% 47.0% 73.5% 73.0% 74.0%
Windows  i7-1260P  18MB  Firefox v139 49.5% 49.0% 50.0% 72.3% 73.0% 73.0%
Windows i7-7700K  8MB  Chrome v137 23.0% 20.0% 9.0% 76.5% 77.0% 76.0%
Windows  i7-7700K  8MB  Firefox v139 33.6% 34.0% 32.0% 77.2% 77.0% 77.0%
Linux i7-1260P  18MB  Chrome v137 22.3% 22.0% 21.0% 70.5% 70.0% 71.0%
Linux i7-1260P  18MB  Firefox v139 25.1% 25.0% 23.0% 51.3% 51.0% 51.0%
Linux i7-7700K  8MB  Chrome v137 34.6% 35.0% 23.0% 96.4% 96.0% 96.0%
Linux i7-7700K  8MB  Firefox v139 20.0% 20.0% 7.0% 89.5% 90.0% 90.0%

The key idea behind this approach is that the naive
attacker will simply pass the data he collected to the CNN
and get a baseline accuracy from the model. The adapted
adversary on the other hand will have performed a device
fingerprinting analysis beforehand and will know how to
perform an initial classification of the cache traces. By using
this data on the model he will be able to get a improved
accuracy, which will be greater than the baseline accuracy.

The malicious JavaScript code that is set up to perform
the device fingerprinting is able to extract key information
of the victim’s system like:

o userAgent: This is a key piece of information since it
explicitly tells the attacker what browser the victim
has and use a model trained on that specific one used
by the victim.

e OS: Another key piece of information that can help
the attacker narrow down the model to use in order
to get a high accuracy.

o cpuCores: This is useful information when setting
up the JavaScript memographer since a high cpu core
count might indicate a higher-end CPU with a larger
LLC, thus having to tweak some parameters within
the JavaScript memographer in order to get a more
precise cache trace.

o CPU vendor: Another key piece of information since
this might indicate Intel or AMD and because CPU
vendors have different cache management systems,
the attacker might need to create a model ad-hoc for
different micro architectures.

4.4 Results and Discussion

The results of our experiments are summarized in Table
1. As shown, the adaptive attacker, who leverages device
fingerprinting to select a adapted model, achieves an
improvement in accuracy, recall, and Fl-score compared to
the naive attacker.

The memorygrams themselves reveal why this is the
case. While some work suggests static websites are harder
to fingerprint, the more critical factor is the stability of
a site’s overall structure, as noted by Judrez et al. [10].
Our visualizations show that even for dynamic sites like
BBC.com and Amazon.com, the initial page loading process
creates a consistent and recognizable pattern of cache
activity. In the memorygrams in particular, the lighter parts

indicate moments of HIGH cache activity, where the
browser’s rendering process causes a high number of cache
evictions. Conversely, darker parts indicate periods of LOW
cache activity. The unique sequence of these periods forms
the website’s fingerprint.

From the memorygrams we can definitely notice a trend
in regards to the cache activity. On the faster system with
the Intel i7-1260P the memory accesses are faster and aren’t
being picked up as much as the slower system with the
Intel i7-7700K, that has more distinguishable and defined
memorygrams. The lowest precision the model was able to
achieve was when loading websites on Firefox in a Linux
environment on the faster system with the i7-1260P. By
looking at the specific memorygram of this particular test
(Figure 6), this data makes sense since all the memory traces
are not particularly distinctive and the model had issues
when trying to identify them.

In contrast, the highest precision was recorded when
loading websites on Chrome in a Linux environment on the
slower system with the i7-7700K. By looking at the specific
memorygram of this particular test (Figure 7), this data makes
sense since all the memory traces very distinctive and the
model was precise when trying to identify them.

5 RELATED WORK

The field of website fingerprinting has been extensively
studied, and the main focus of previous work was to
analyse the network traces of target systems in order to
classify them and de-anonymize user activity [7]. The
effectiveness of this approach can be limited by various
network-level countermeasures designed to obfuscate
these patterns, often by injecting cover traffic or padding
packets [18]. Moreover, factors like natural network noise
and “concept drift”, where websites change over time, can
worsen the accuracy of these network-based attacks [10].

To address these issues, Shusterman et al. [4] proposed
a new form of attack that moves from the network to the
local machine, monitoring the CPU’s cache occupancy as a
side channel. This method has proven more resilient to both
traffic-shaping defences and the effects of browser caching.
Our work builds directly upon this foundation. To our
knowledge, no prior scientific paper has combined a cache
occupancy attack with a preliminary device fingerprinting



analysis to create an adaptive attack model that selects a
specialized classifier.

The primary defences against cache-based attacks have
focused on mitigating contention-based techniques. One
major area of research is cache randomization. For example,
Werner et al. developed ScatterCache [11], a design that
pseudo-randomly remaps cache lines to hide them from
an attacker. While effective against contention, a systematic
evaluation by Chakraborty et al. [5] demonstrated that many
state-of-the-art randomized cache designs, including Scat-
terCache and CEASER, remain vulnerable to occupancy-
based attacks, which they proved by performing a full AES
key recovery.

Other defence strategies have also been proposed. Cache
partitioning, often supported by hardware features like
Intel’s Cache Allocation Technology (CAT) [17], aims to isolate
processes from one another to prevent cross-core informa-
tion leakage. Perhaps the most critical defence relevant to
our browser-based attack is the reduction of timer preci-
sion. In response to the discovery of speculative execution
attacks like Spectre [13], modern browsers now deliberately
coarsen the resolution of high-precision timers such as per-
formance.now() [2], making it harder for malicious scripts to
measure the minute timing differences required for many
side-channel attacks.

6 FUTURE WORKS

While our study confirmed that an adaptive attacker is
significantly more effective, there are several interesting
possibilities for future research that could use these findings.

An obvious next step would be to expand the
architectural testing. Our work was done on Intel CPUs,
but as AMD and ARM-based processors become more
prevalent, particularly in mobile devices, it is important to
understand how this attack performs on their particular
cache designs. The differences in cache design and physical
layout on these architectures would likely produce very
different fingerprints, presenting new challenges and
opportunities for the attacker.

Another area for exploration is the model architecture
itself. We used a CNN-based model, but other architectures
might be better suited for this type of sequence data.
Investigating models like Transformers, which are designed
to capture long-range dependencies, could potentially bring
to even more accurate classifiers.

Finally, a key limitation in any fingerprinting study
is the size of the dataset. While our 200 traces per site
were sufficient to prove our hypothesis, a much larger-scale
data collection, with thousands of traces, would allow the
models to learn more robust and generalizable features.
It’s likely that with more data, even the lower-performing
models in our study could see a significant boost in
accuracy.

7 CONCLUSIONS

The results from our experiments show a contrast between
a naive attacker and our proposed adaptive attacker.
The naive model, which was trained on a mixed dataset
without any prior knowledge of the target environment,
struggled significantly, achieving a baseline accuracy of at
most 49.5%. This confirms that environmental factors like
the operating system, CPU architecture, and browser choice
create fingerprints that are too varied for a single generic
model to learn effectively.

In contrast, the adaptive attacker, which first identifies
the target’s environment and then selects an adapted
model, demonstrated a noticeable increase in performance.
We saw accuracy rates as high as 96.4% accuracy in certain
configurations. These results validate our hypothesis:
knowing the specific characteristics of a target system is a
crucial prerequisite for launching a successful cache-based
fingerprinting attack.

Interestingly, the performance of the adaptive attack
still varied across different environments, with the highest
success rate observed on the Linux system with the older
i7-7700K processor. This suggests that our adaptive model
is a clear improvement, however, the system’s parameters
like its OS, the browser used, and the hardware produces
distinct and sometimes more challenging fingerprints to
detect.

Our work demonstrates that the threat of cache-based
website fingerprinting is not just theoretical but can be
made practical and relevant. By adding a preliminary device
fingerprinting stage, an attacker can overcome many issues
that would otherwise worsen a simpler attack. This high-
lights the need for better defence mechanisms that account
for not just network traffic, but also the information leaked
by the very hardware our browsers run on. Future work
could expand on this by testing a wider range of architec-
tures, such as ARM, and by developing countermeasures
that directly target this adaptive attack model.
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Fig. 2. Google Chrome traces performed on the system with the Intel i7-1260P on Linux
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Fig. 3. Google Chrome traces performed on the system with the Intel i7-7700K on Linux
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Fig. 4. Google Chrome traces performed on the system with the Intel i7-1260P on Windows
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Fig. 5. Google Chrome traces performed on the system with the Intel i7-7700K on Windows
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Fig. 6. Firefox traces performed on the system with the Intel i7-1260P on Linux
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Fig. 7. Firefox traces performed on the system with the Intel i7-7700K on Linux
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Fig. 8. Firefox traces performed on the system with the Intel i7-1260P on Windows
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Fig. 9. Firefox traces performed on the system with the Intel i7-7700K on Windows
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